cl_enqueuendrangekernel.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include "socl.h"
  17. #include "event.h"
  18. void soclEnqueueNDRangeKernel_task(void *descr[], void *args)
  19. {
  20. command_ndrange_kernel cmd = (command_ndrange_kernel)args;
  21. cl_command_queue cq;
  22. int wid;
  23. cl_int err;
  24. cl_event ev = command_event_get(cmd);
  25. ev->prof_start = _socl_nanotime();
  26. gc_entity_release(ev);
  27. wid = starpu_worker_get_id_check();
  28. starpu_opencl_get_queue(wid, &cq);
  29. DEBUG_MSG("[worker %d] [kernel %d] Executing kernel...\n", wid, cmd->kernel->id);
  30. int range = starpu_worker_get_range();
  31. /* Set arguments */
  32. {
  33. unsigned int i;
  34. int buf = 0;
  35. for (i=0; i<cmd->num_args; i++)
  36. {
  37. switch (cmd->arg_types[i])
  38. {
  39. case Null:
  40. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], NULL);
  41. break;
  42. case Buffer:
  43. {
  44. cl_mem mem;
  45. mem = (cl_mem)STARPU_VARIABLE_GET_PTR(descr[buf]);
  46. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], &mem);
  47. buf++;
  48. }
  49. break;
  50. case Immediate:
  51. err = clSetKernelArg(cmd->kernel->cl_kernels[range], i, cmd->arg_sizes[i], cmd->args[i]);
  52. break;
  53. }
  54. if (err != CL_SUCCESS)
  55. {
  56. DEBUG_CL("clSetKernelArg", err);
  57. DEBUG_ERROR("Aborting\n");
  58. }
  59. }
  60. }
  61. /* Calling Kernel */
  62. cl_event event;
  63. err = clEnqueueNDRangeKernel(cq, cmd->kernel->cl_kernels[range], cmd->work_dim, cmd->global_work_offset, cmd->global_work_size, cmd->local_work_size, 0, NULL, &event);
  64. if (err != CL_SUCCESS)
  65. {
  66. ERROR_MSG("Worker[%d] Unable to Enqueue kernel (error %d)\n", wid, err);
  67. DEBUG_CL("clEnqueueNDRangeKernel", err);
  68. DEBUG_MSG("Workdim %u, global_work_offset %p, global_work_size %p, local_work_size %p\n",
  69. cmd->work_dim, cmd->global_work_offset, cmd->global_work_size, cmd->local_work_size);
  70. DEBUG_MSG("Global work size: %ld %ld %ld\n", (long)cmd->global_work_size[0],
  71. (long)(cmd->work_dim > 1 ? cmd->global_work_size[1] : 1), (long)(cmd->work_dim > 2 ? cmd->global_work_size[2] : 1));
  72. if (cmd->local_work_size != NULL)
  73. DEBUG_MSG("Local work size: %ld %ld %ld\n", (long)cmd->local_work_size[0],
  74. (long)(cmd->work_dim > 1 ? cmd->local_work_size[1] : 1), (long)(cmd->work_dim > 2 ? cmd->local_work_size[2] : 1));
  75. }
  76. else
  77. {
  78. /* Waiting for kernel to terminate */
  79. clWaitForEvents(1, &event);
  80. clReleaseEvent(event);
  81. }
  82. }
  83. /**
  84. * Real kernel enqueuing command
  85. */
  86. cl_int command_ndrange_kernel_submit(command_ndrange_kernel cmd)
  87. {
  88. starpu_task task = task_create();
  89. task->cl = &cmd->codelet;
  90. task->cl->model = cmd->kernel->perfmodel;
  91. task->cl_arg = cmd;
  92. task->cl_arg_size = sizeof(cmd);
  93. /* Execute the task on a specific worker? */
  94. if (cmd->_command.event->cq->device != NULL)
  95. {
  96. task->execute_on_a_specific_worker = 1;
  97. task->workerid = cmd->_command.event->cq->device->worker_id;
  98. }
  99. struct starpu_codelet * codelet = task->cl;
  100. /* We need to detect which parameters are OpenCL's memory objects and
  101. * we retrieve their corresponding StarPU buffers */
  102. cmd->num_buffers = 0;
  103. cmd->buffers = malloc(sizeof(cl_mem) * cmd->num_args);
  104. unsigned int i;
  105. for (i=0; i<cmd->num_args; i++)
  106. {
  107. if (cmd->arg_types[i] == Buffer)
  108. {
  109. cl_mem buf = *(cl_mem*)cmd->args[i];
  110. gc_entity_store(&cmd->buffers[cmd->num_buffers], buf);
  111. task->handles[cmd->num_buffers] = buf->handle;
  112. /* Determine best StarPU buffer access mode */
  113. int mode;
  114. if (buf->mode == CL_MEM_READ_ONLY)
  115. mode = STARPU_R;
  116. else if (buf->mode == CL_MEM_WRITE_ONLY)
  117. {
  118. mode = STARPU_W;
  119. buf->scratch = 0;
  120. }
  121. else if (buf->scratch)
  122. { //RW but never accessed in RW or W mode
  123. mode = STARPU_W;
  124. buf->scratch = 0;
  125. }
  126. else
  127. {
  128. mode = STARPU_RW;
  129. buf->scratch = 0;
  130. }
  131. codelet->modes[cmd->num_buffers] = mode;
  132. cmd->num_buffers += 1;
  133. }
  134. }
  135. codelet->nbuffers = cmd->num_buffers;
  136. task_submit(task, cmd);
  137. return CL_SUCCESS;
  138. }
  139. CL_API_SUFFIX__VERSION_1_1
  140. CL_API_ENTRY cl_int CL_API_CALL
  141. soclEnqueueNDRangeKernel(cl_command_queue cq,
  142. cl_kernel kernel,
  143. cl_uint work_dim,
  144. const size_t * global_work_offset,
  145. const size_t * global_work_size,
  146. const size_t * local_work_size,
  147. cl_uint num_events,
  148. const cl_event * events,
  149. cl_event * event)
  150. {
  151. if (kernel->split_func != NULL && !STARPU_PTHREAD_MUTEX_TRYLOCK(&kernel->split_lock))
  152. {
  153. cl_event beforeEvent, afterEvent, totalEvent;
  154. totalEvent = event_create();
  155. gc_entity_store(&totalEvent->cq, cq);
  156. command_marker cmd = command_marker_create();
  157. beforeEvent = command_event_get(cmd);
  158. command_queue_enqueue(cq, cmd, num_events, events);
  159. cl_uint iter = 1;
  160. cl_uint split_min = CL_UINT_MAX;
  161. cl_uint split_min_iter = 1;
  162. while (iter < kernel->split_space && kernel->split_perfs[iter] != 0)
  163. {
  164. if (kernel->split_perfs[iter] < split_min)
  165. {
  166. split_min = kernel->split_perfs[iter];
  167. split_min_iter = iter;
  168. }
  169. iter++;
  170. }
  171. if (iter == kernel->split_space)
  172. {
  173. iter = split_min_iter;
  174. }
  175. cl_int ret = kernel->split_func(cq, iter, kernel->split_data, beforeEvent, &afterEvent);
  176. if (ret == CL_SUCCESS)
  177. {
  178. //FIXME: blocking call
  179. soclWaitForEvents(1, &afterEvent);
  180. /* Store perf */
  181. cl_ulong start,end;
  182. soclGetEventProfilingInfo(beforeEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &start, NULL);
  183. soclGetEventProfilingInfo(afterEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
  184. soclReleaseEvent(afterEvent);
  185. kernel->split_perfs[iter] = end-start;
  186. STARPU_PTHREAD_MUTEX_UNLOCK(&kernel->split_lock);
  187. event_complete(totalEvent);
  188. totalEvent->prof_start = start;
  189. totalEvent->prof_submit = start;
  190. totalEvent->prof_queued = start;
  191. totalEvent->prof_end = end;
  192. RETURN_EVENT(totalEvent,event);
  193. }
  194. else
  195. {
  196. STARPU_PTHREAD_MUTEX_UNLOCK(&kernel->split_lock);
  197. soclReleaseEvent(totalEvent);
  198. }
  199. return ret;
  200. }
  201. else
  202. {
  203. command_ndrange_kernel cmd = command_ndrange_kernel_create(kernel, work_dim,
  204. global_work_offset, global_work_size, local_work_size);
  205. cl_event ev = command_event_get(cmd);
  206. command_queue_enqueue(cq, cmd, num_events, events);
  207. RETURN_EVENT(ev, event);
  208. }
  209. return CL_SUCCESS;
  210. }