starpu.texi 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. * Function Index:: Index of C functions.
  38. @end menu
  39. @c ---------------------------------------------------------------------
  40. @c Introduction to StarPU
  41. @c ---------------------------------------------------------------------
  42. @node Introduction
  43. @chapter Introduction to StarPU
  44. @menu
  45. * Motivation:: Why StarPU ?
  46. * StarPU in a Nutshell:: The Fundamentals of StarPU
  47. @end menu
  48. @node Motivation
  49. @section Motivation
  50. @c complex machines with heterogeneous cores/devices
  51. The use of specialized hardware such as accelerators or coprocessors offers an
  52. interesting approach to overcome the physical limits encountered by processor
  53. architects. As a result, many machines are now equipped with one or several
  54. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  55. efforts have been devoted to offload computation onto such accelerators, very
  56. little attention as been paid to portability concerns on the one hand, and to the
  57. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  58. StarPU is a runtime system that offers support for heterogeneous multicore
  59. architectures, it not only offers a unified view of the computational resources
  60. (i.e. CPUs and accelerators at the same time), but it also takes care of
  61. efficiently mapping and executing tasks onto an heterogeneous machine while
  62. transparently handling low-level issues such as data transfers in a portable
  63. fashion.
  64. @c this leads to a complicated distributed memory design
  65. @c which is not (easily) manageable by hand
  66. @c added value/benefits of StarPU
  67. @c - portability
  68. @c - scheduling, perf. portability
  69. @node StarPU in a Nutshell
  70. @section StarPU in a Nutshell
  71. @menu
  72. * Codelet and Tasks::
  73. * StarPU Data Management Library::
  74. * Research Papers::
  75. @end menu
  76. From a programming point of view, StarPU is not a new language but a library
  77. that executes tasks explicitly submitted by the application. The data that a
  78. task manipulates are automatically transferred onto the accelerator so that the
  79. programmer does not have to take care of complex data movements. StarPU also
  80. takes particular care of scheduling those tasks efficiently and allows
  81. scheduling experts to implement custom scheduling policies in a portable
  82. fashion.
  83. @c explain the notion of codelet and task (i.e. g(A, B)
  84. @node Codelet and Tasks
  85. @subsection Codelet and Tasks
  86. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  87. computational kernel that can possibly be implemented on multiple architectures
  88. such as a CPU, a CUDA device or a Cell's SPU.
  89. @c TODO insert illustration f : f_spu, f_cpu, ...
  90. Another important data structure is the @b{task}. Executing a StarPU task
  91. consists in applying a codelet on a data set, on one of the architectures on
  92. which the codelet is implemented. In addition to the codelet that a task
  93. useuses, it also describes which data are accessed, and how they are
  94. accessed during the computation (read and/or write).
  95. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  96. operation. The task structure can also specify a @b{callback} function that is
  97. called once StarPU has properly executed the task. It also contains optional
  98. fields that the application may use to give hints to the scheduler (such as
  99. priority levels).
  100. A task may be identified by a unique 64-bit number chosen by the application
  101. which we refer as a @b{tag}.
  102. Task dependencies can be enforced either by the means of callback functions, by
  103. expressing dependencies between explicit tasks or by expressing dependencies
  104. between tags (which can thus correspond to tasks that have not been submitted
  105. yet).
  106. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  107. @c DSM
  108. @node StarPU Data Management Library
  109. @subsection StarPU Data Management Library
  110. Because StarPU schedules tasks at runtime, data transfers have to be
  111. done automatically and ``just-in-time'' between processing units,
  112. relieving the application programmer from explicit data transfers.
  113. Moreover, to avoid unnecessary transfers, StarPU keeps data
  114. where it was last needed, even if was modified there, and it
  115. allows multiple copies of the same data to reside at the same time on
  116. several processing units as long as it is not modified.
  117. @node Research Papers
  118. @subsection Research Papers
  119. Research papers about StarPU can be found at
  120. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  121. Notably a good overview in the research report
  122. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  123. @c ---------------------------------------------------------------------
  124. @c Installing StarPU
  125. @c ---------------------------------------------------------------------
  126. @node Installing StarPU
  127. @chapter Installing StarPU
  128. @menu
  129. * Downloading StarPU::
  130. * Configuration of StarPU::
  131. * Building and Installing StarPU::
  132. @end menu
  133. StarPU can be built and installed by the standard means of the GNU
  134. autotools. The following chapter is intended to briefly remind how these tools
  135. can be used to install StarPU.
  136. @node Downloading StarPU
  137. @section Downloading StarPU
  138. @menu
  139. * Getting Sources::
  140. * Optional dependencies::
  141. @end menu
  142. @node Getting Sources
  143. @subsection Getting Sources
  144. The simplest way to get StarPU sources is to download the latest official
  145. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  146. or the latest nightly snapshot from
  147. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  148. how to get the very latest version from the subversion repository itself, it
  149. should be needed only if you need the very latest changes (i.e. less than a
  150. day!)
  151. The source code is managed by a Subversion server hosted by the
  152. InriaGforge. To get the source code, you need:
  153. @itemize
  154. @item
  155. To install the client side of the software Subversion if it is
  156. not already available on your system. The software can be obtained from
  157. @indicateurl{http://subversion.tigris.org} . If you are running
  158. on Windows, you will probably prefer to use TortoiseSVN from
  159. @indicateurl{http://tortoisesvn.tigris.org/} .
  160. @item
  161. You can check out the project's SVN repository through anonymous
  162. access. This will provide you with a read access to the
  163. repository.
  164. If you need to have write access on the StarPU project, you can also choose to
  165. become a member of the project @code{starpu}. For this, you first need to get
  166. an account to the gForge server. You can then send a request to join the project
  167. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  168. @item
  169. More information on how to get a gForge account, to become a member of
  170. a project, or on any other related task can be obtained from the
  171. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  172. thing is to upload your public SSH key on the gForge server (see the
  173. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  174. instructions).
  175. @end itemize
  176. You can now check out the latest version from the Subversion server:
  177. @itemize
  178. @item
  179. using the anonymous access via svn:
  180. @example
  181. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  182. @end example
  183. @item
  184. using the anonymous access via https:
  185. @example
  186. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  187. @end example
  188. The password is @code{anonsvn}.
  189. @item
  190. using your gForge account
  191. @example
  192. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  193. @end example
  194. @end itemize
  195. The following step requires the availability of @code{autoconf} and
  196. @code{automake} to generate the @code{./configure} script. This is
  197. done by calling @code{./autogen.sh}. The required version for
  198. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  199. @example
  200. % ./autogen.sh
  201. @end example
  202. If the autotools are not available on your machine or not recent
  203. enough, you can choose to download the latest nightly tarball, which
  204. is provided with a @code{configure} script.
  205. @example
  206. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  207. @end example
  208. @node Optional dependencies
  209. @subsection Optional dependencies
  210. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  211. but strongly recommended. It allows to increase performance, and to
  212. perform some topology aware scheduling.
  213. @code{hwloc} is available in major distributions and for most OSes and can be
  214. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  215. @node Configuration of StarPU
  216. @section Configuration of StarPU
  217. @menu
  218. * Generating Makefiles and configuration scripts::
  219. * Running the configuration::
  220. @end menu
  221. @node Generating Makefiles and configuration scripts
  222. @subsection Generating Makefiles and configuration scripts
  223. This step is not necessary when using the tarball releases of StarPU. If you
  224. are using the source code from the svn repository, you first need to generate
  225. the configure scripts and the Makefiles.
  226. @example
  227. % ./autogen.sh
  228. @end example
  229. @node Running the configuration
  230. @subsection Running the configuration
  231. @example
  232. % ./configure
  233. @end example
  234. Details about options that are useful to give to @code{./configure} are given in
  235. @ref{Compilation configuration}.
  236. @node Building and Installing StarPU
  237. @section Building and Installing StarPU
  238. @menu
  239. * Building::
  240. * Sanity Checks::
  241. * Installing::
  242. @end menu
  243. @node Building
  244. @subsection Building
  245. @example
  246. % make
  247. @end example
  248. @node Sanity Checks
  249. @subsection Sanity Checks
  250. In order to make sure that StarPU is working properly on the system, it is also
  251. possible to run a test suite.
  252. @example
  253. % make check
  254. @end example
  255. @node Installing
  256. @subsection Installing
  257. In order to install StarPU at the location that was specified during
  258. configuration:
  259. @example
  260. % make install
  261. @end example
  262. @c ---------------------------------------------------------------------
  263. @c Using StarPU
  264. @c ---------------------------------------------------------------------
  265. @node Using StarPU
  266. @chapter Using StarPU
  267. @menu
  268. * Setting flags for compiling and linking applications::
  269. * Running a basic StarPU application::
  270. * Kernel threads started by StarPU::
  271. * Using accelerators::
  272. @end menu
  273. @node Setting flags for compiling and linking applications
  274. @section Setting flags for compiling and linking applications
  275. Compiling and linking an application against StarPU may require to use
  276. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  277. To this end, it is possible to use the @code{pkg-config} tool.
  278. If StarPU was not installed at some standard location, the path of StarPU's
  279. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  280. that @code{pkg-config} can find it. For example if StarPU was installed in
  281. @code{$prefix_dir}:
  282. @example
  283. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  284. @end example
  285. The flags required to compile or link against StarPU are then
  286. accessible with the following commands:
  287. @example
  288. % pkg-config --cflags libstarpu # options for the compiler
  289. % pkg-config --libs libstarpu # options for the linker
  290. @end example
  291. @node Running a basic StarPU application
  292. @section Running a basic StarPU application
  293. Basic examples using StarPU have been built in the directory
  294. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  295. example @code{vector_scal}.
  296. @example
  297. % $prefix_dir/lib/starpu/examples/vector_scal
  298. BEFORE : First element was 1.000000
  299. AFTER First element is 3.140000
  300. %
  301. @end example
  302. When StarPU is used for the first time, the directory
  303. @code{$HOME/.starpu/} is created, performance models will be stored in
  304. that directory.
  305. Please note that buses are benchmarked when StarPU is launched for the
  306. first time. This may take a few minutes, or less if @code{hwloc} is
  307. installed. This step is done only once per user and per machine.
  308. @node Kernel threads started by StarPU
  309. @section Kernel threads started by StarPU
  310. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  311. them per GPU. The application is not supposed to do computations in its own
  312. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  313. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  314. worker).
  315. @node Using accelerators
  316. @section Using accelerators
  317. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  318. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  319. This design choice was necessary as OpenCL and CUDA can not run at the
  320. same time on the same NVIDIA GPU, as there is currently no interoperability
  321. between them.
  322. Details on how to specify devices running OpenCL and the ones running
  323. CUDA are given in @ref{Enabling OpenCL}.
  324. @c ---------------------------------------------------------------------
  325. @c Basic Examples
  326. @c ---------------------------------------------------------------------
  327. @node Basic Examples
  328. @chapter Basic Examples
  329. @menu
  330. * Compiling and linking options::
  331. * Hello World:: Submitting Tasks
  332. * Scaling a Vector:: Manipulating Data
  333. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  334. * Task and Worker Profiling::
  335. * Partitioning Data:: Partitioning Data
  336. * Performance model example::
  337. * Theoretical lower bound on execution time::
  338. * Insert Task Utility::
  339. * More examples:: More examples shipped with StarPU
  340. @end menu
  341. @node Compiling and linking options
  342. @section Compiling and linking options
  343. Let's suppose StarPU has been installed in the directory
  344. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  345. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  346. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  347. libraries at runtime.
  348. @example
  349. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  350. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  351. @end example
  352. The Makefile could for instance contain the following lines to define which
  353. options must be given to the compiler and to the linker:
  354. @cartouche
  355. @example
  356. CFLAGS += $$(pkg-config --cflags libstarpu)
  357. LDFLAGS += $$(pkg-config --libs libstarpu)
  358. @end example
  359. @end cartouche
  360. @node Hello World
  361. @section Hello World
  362. @menu
  363. * Required Headers::
  364. * Defining a Codelet::
  365. * Submitting a Task::
  366. * Execution of Hello World::
  367. @end menu
  368. In this section, we show how to implement a simple program that submits a task to StarPU.
  369. @node Required Headers
  370. @subsection Required Headers
  371. The @code{starpu.h} header should be included in any code using StarPU.
  372. @cartouche
  373. @smallexample
  374. #include <starpu.h>
  375. @end smallexample
  376. @end cartouche
  377. @node Defining a Codelet
  378. @subsection Defining a Codelet
  379. @cartouche
  380. @smallexample
  381. struct params @{
  382. int i;
  383. float f;
  384. @};
  385. void cpu_func(void *buffers[], void *cl_arg)
  386. @{
  387. struct params *params = cl_arg;
  388. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  389. @}
  390. starpu_codelet cl =
  391. @{
  392. .where = STARPU_CPU,
  393. .cpu_func = cpu_func,
  394. .nbuffers = 0
  395. @};
  396. @end smallexample
  397. @end cartouche
  398. A codelet is a structure that represents a computational kernel. Such a codelet
  399. may contain an implementation of the same kernel on different architectures
  400. (e.g. CUDA, Cell's SPU, x86, ...).
  401. The @code{nbuffers} field specifies the number of data buffers that are
  402. manipulated by the codelet: here the codelet does not access or modify any data
  403. that is controlled by our data management library. Note that the argument
  404. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  405. structure) does not count as a buffer since it is not managed by our data
  406. management library, but just contain trivial parameters.
  407. @c TODO need a crossref to the proper description of "where" see bla for more ...
  408. We create a codelet which may only be executed on the CPUs. The @code{where}
  409. field is a bitmask that defines where the codelet may be executed. Here, the
  410. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  411. (@pxref{Codelets and Tasks} for more details on this field).
  412. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  413. which @emph{must} have the following prototype:
  414. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  415. In this example, we can ignore the first argument of this function which gives a
  416. description of the input and output buffers (e.g. the size and the location of
  417. the matrices) since there is none.
  418. The second argument is a pointer to a buffer passed as an
  419. argument to the codelet by the means of the @code{cl_arg} field of the
  420. @code{starpu_task} structure.
  421. @c TODO rewrite so that it is a little clearer ?
  422. Be aware that this may be a pointer to a
  423. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  424. if the codelet modifies this buffer, there is no guarantee that the initial
  425. buffer will be modified as well: this for instance implies that the buffer
  426. cannot be used as a synchronization medium. If synchronization is needed, data
  427. has to be registered to StarPU, see @ref{Scaling a Vector}.
  428. @node Submitting a Task
  429. @subsection Submitting a Task
  430. @cartouche
  431. @smallexample
  432. void callback_func(void *callback_arg)
  433. @{
  434. printf("Callback function (arg %x)\n", callback_arg);
  435. @}
  436. int main(int argc, char **argv)
  437. @{
  438. /* @b{initialize StarPU} */
  439. starpu_init(NULL);
  440. struct starpu_task *task = starpu_task_create();
  441. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  442. struct params params = @{ 1, 2.0f @};
  443. task->cl_arg = &params;
  444. task->cl_arg_size = sizeof(params);
  445. task->callback_func = callback_func;
  446. task->callback_arg = 0x42;
  447. /* @b{starpu_task_submit will be a blocking call} */
  448. task->synchronous = 1;
  449. /* @b{submit the task to StarPU} */
  450. starpu_task_submit(task);
  451. /* @b{terminate StarPU} */
  452. starpu_shutdown();
  453. return 0;
  454. @}
  455. @end smallexample
  456. @end cartouche
  457. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  458. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  459. be submitted after the termination of StarPU by a call to
  460. @code{starpu_shutdown}.
  461. In the example above, a task structure is allocated by a call to
  462. @code{starpu_task_create}. This function only allocates and fills the
  463. corresponding structure with the default settings (@pxref{starpu_task_create}),
  464. but it does not submit the task to StarPU.
  465. @c not really clear ;)
  466. The @code{cl} field is a pointer to the codelet which the task will
  467. execute: in other words, the codelet structure describes which computational
  468. kernel should be offloaded on the different architectures, and the task
  469. structure is a wrapper containing a codelet and the piece of data on which the
  470. codelet should operate.
  471. The optional @code{cl_arg} field is a pointer to a buffer (of size
  472. @code{cl_arg_size}) with some parameters for the kernel
  473. described by the codelet. For instance, if a codelet implements a computational
  474. kernel that multiplies its input vector by a constant, the constant could be
  475. specified by the means of this buffer, instead of registering it as a StarPU
  476. data. It must however be noted that StarPU avoids making copy whenever possible
  477. and rather passes the pointer as such, so the buffer which is pointed at must
  478. kept allocated until the task terminates, and if several tasks are submitted
  479. with various parameters, each of them must be given a pointer to their own
  480. buffer.
  481. Once a task has been executed, an optional callback function is be called.
  482. While the computational kernel could be offloaded on various architectures, the
  483. callback function is always executed on a CPU. The @code{callback_arg}
  484. pointer is passed as an argument of the callback. The prototype of a callback
  485. function must be:
  486. @code{void (*callback_function)(void *);}
  487. If the @code{synchronous} field is non-zero, task submission will be
  488. synchronous: the @code{starpu_task_submit} function will not return until the
  489. task was executed. Note that the @code{starpu_shutdown} method does not
  490. guarantee that asynchronous tasks have been executed before it returns,
  491. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  492. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  493. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  494. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  495. @code{starpu_data_set_sequential_consistency_flag}.
  496. @node Execution of Hello World
  497. @subsection Execution of Hello World
  498. @smallexample
  499. % make hello_world
  500. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  501. % ./hello_world
  502. Hello world (params = @{1, 2.000000@} )
  503. Callback function (arg 42)
  504. @end smallexample
  505. @node Scaling a Vector
  506. @section Manipulating Data: Scaling a Vector
  507. The previous example has shown how to submit tasks. In this section,
  508. we show how StarPU tasks can manipulate data. The full source code for
  509. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  510. @menu
  511. * Source code of Vector Scaling::
  512. * Execution of Vector Scaling::
  513. @end menu
  514. @node Source code of Vector Scaling
  515. @subsection Source code of Vector Scaling
  516. Programmers can describe the data layout of their application so that StarPU is
  517. responsible for enforcing data coherency and availability across the machine.
  518. Instead of handling complex (and non-portable) mechanisms to perform data
  519. movements, programmers only declare which piece of data is accessed and/or
  520. modified by a task, and StarPU makes sure that when a computational kernel
  521. starts somewhere (e.g. on a GPU), its data are available locally.
  522. Before submitting those tasks, the programmer first needs to declare the
  523. different pieces of data to StarPU using the @code{starpu_*_data_register}
  524. functions. To ease the development of applications for StarPU, it is possible
  525. to describe multiple types of data layout. A type of data layout is called an
  526. @b{interface}. There are different predefined interfaces available in StarPU:
  527. here we will consider the @b{vector interface}.
  528. The following lines show how to declare an array of @code{NX} elements of type
  529. @code{float} using the vector interface:
  530. @cartouche
  531. @smallexample
  532. float vector[NX];
  533. starpu_data_handle vector_handle;
  534. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  535. sizeof(vector[0]));
  536. @end smallexample
  537. @end cartouche
  538. The first argument, called the @b{data handle}, is an opaque pointer which
  539. designates the array in StarPU. This is also the structure which is used to
  540. describe which data is used by a task. The second argument is the node number
  541. where the data originally resides. Here it is 0 since the @code{vector} array is in
  542. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  543. the number of elements in the vector and the size of each element.
  544. The following shows how to construct a StarPU task that will manipulate the
  545. vector and a constant factor.
  546. @cartouche
  547. @smallexample
  548. float factor = 3.14;
  549. struct starpu_task *task = starpu_task_create();
  550. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  551. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  552. task->buffers[0].mode = STARPU_RW;
  553. task->cl_arg = &factor;
  554. task->cl_arg_size = sizeof(factor);
  555. task->synchronous = 1;
  556. starpu_task_submit(task);
  557. @end smallexample
  558. @end cartouche
  559. Since the factor is a mere constant float value parameter,
  560. it does not need a preliminary registration, and
  561. can just be passed through the @code{cl_arg} pointer like in the previous
  562. example. The vector parameter is described by its handle.
  563. There are two fields in each element of the @code{buffers} array.
  564. @code{handle} is the handle of the data, and @code{mode} specifies how the
  565. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  566. write-only and @code{STARPU_RW} for read and write access).
  567. The definition of the codelet can be written as follows:
  568. @cartouche
  569. @smallexample
  570. void scal_cpu_func(void *buffers[], void *cl_arg)
  571. @{
  572. unsigned i;
  573. float *factor = cl_arg;
  574. /* length of the vector */
  575. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  576. /* local copy of the vector pointer */
  577. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  578. for (i = 0; i < n; i++)
  579. val[i] *= *factor;
  580. @}
  581. starpu_codelet cl = @{
  582. .where = STARPU_CPU,
  583. .cpu_func = scal_cpu_func,
  584. .nbuffers = 1
  585. @};
  586. @end smallexample
  587. @end cartouche
  588. The first argument is an array that gives
  589. a description of all the buffers passed in the @code{task->buffers}@ array. The
  590. size of this array is given by the @code{nbuffers} field of the codelet
  591. structure. For the sake of genericity, this array contains pointers to the
  592. different interfaces describing each buffer. In the case of the @b{vector
  593. interface}, the location of the vector (resp. its length) is accessible in the
  594. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  595. read-write fashion, any modification will automatically affect future accesses
  596. to this vector made by other tasks.
  597. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  598. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  599. constant factor from this pointer.
  600. @node Execution of Vector Scaling
  601. @subsection Execution of Vector Scaling
  602. @smallexample
  603. % make vector_scal
  604. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  605. % ./vector_scal
  606. 0.000000 3.000000 6.000000 9.000000 12.000000
  607. @end smallexample
  608. @node Vector Scaling on an Hybrid CPU/GPU Machine
  609. @section Vector Scaling on an Hybrid CPU/GPU Machine
  610. Contrary to the previous examples, the task submitted in this example may not
  611. only be executed by the CPUs, but also by a CUDA device.
  612. @menu
  613. * Definition of the CUDA Kernel::
  614. * Definition of the OpenCL Kernel::
  615. * Definition of the Main Code::
  616. * Execution of Hybrid Vector Scaling::
  617. @end menu
  618. @node Definition of the CUDA Kernel
  619. @subsection Definition of the CUDA Kernel
  620. The CUDA implementation can be written as follows. It needs to be compiled with
  621. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  622. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  623. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  624. call.
  625. @cartouche
  626. @smallexample
  627. #include <starpu.h>
  628. static __global__ void vector_mult_cuda(float *val, unsigned n,
  629. float factor)
  630. @{
  631. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  632. if (i < n)
  633. val[i] *= factor;
  634. @}
  635. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  636. @{
  637. float *factor = (float *)_args;
  638. /* length of the vector */
  639. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  640. /* local copy of the vector pointer */
  641. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  642. unsigned threads_per_block = 64;
  643. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  644. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  645. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  646. @}
  647. @end smallexample
  648. @end cartouche
  649. @node Definition of the OpenCL Kernel
  650. @subsection Definition of the OpenCL Kernel
  651. The OpenCL implementation can be written as follows. StarPU provides
  652. tools to compile a OpenCL kernel stored in a file.
  653. @cartouche
  654. @smallexample
  655. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  656. @{
  657. const int i = get_global_id(0);
  658. if (i < nx) @{
  659. val[i] *= factor;
  660. @}
  661. @}
  662. @end smallexample
  663. @end cartouche
  664. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  665. a device pointer, so that it is passed as such to the OpenCL kernel.
  666. @cartouche
  667. @smallexample
  668. #include <starpu.h>
  669. @i{#include <starpu_opencl.h>}
  670. @i{extern struct starpu_opencl_program programs;}
  671. void scal_opencl_func(void *buffers[], void *_args)
  672. @{
  673. float *factor = _args;
  674. @i{ int id, devid, err;}
  675. @i{ cl_kernel kernel;}
  676. @i{ cl_command_queue queue;}
  677. @i{ cl_event event;}
  678. /* length of the vector */
  679. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  680. /* local copy of the vector pointer */
  681. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  682. @i{ id = starpu_worker_get_id();}
  683. @i{ devid = starpu_worker_get_devid(id);}
  684. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  685. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  686. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  687. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  688. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  689. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  690. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  691. @i{ @{}
  692. @i{ size_t global=1;}
  693. @i{ size_t local=1;}
  694. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  695. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  696. @i{ @}}
  697. @i{ clFinish(queue);}
  698. @i{ starpu_opencl_collect_stats(event);}
  699. @i{ clReleaseEvent(event);}
  700. @i{ starpu_opencl_release_kernel(kernel);}
  701. @}
  702. @end smallexample
  703. @end cartouche
  704. @node Definition of the Main Code
  705. @subsection Definition of the Main Code
  706. The CPU implementation is the same as in the previous section.
  707. Here is the source of the main application. You can notice the value of the
  708. field @code{where} for the codelet. We specify
  709. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  710. can be executed either on a CPU or on a CUDA or an OpenCL device.
  711. @cartouche
  712. @smallexample
  713. #include <starpu.h>
  714. #define NX 2048
  715. extern void scal_cuda_func(void *buffers[], void *_args);
  716. extern void scal_cpu_func(void *buffers[], void *_args);
  717. extern void scal_opencl_func(void *buffers[], void *_args);
  718. /* @b{Definition of the codelet} */
  719. static starpu_codelet cl = @{
  720. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  721. /* @b{on a CUDA device, or on an OpenCL device} */
  722. .cuda_func = scal_cuda_func;
  723. .cpu_func = scal_cpu_func;
  724. .opencl_func = scal_opencl_func;
  725. .nbuffers = 1;
  726. @}
  727. #ifdef STARPU_USE_OPENCL
  728. /* @b{The compiled version of the OpenCL program} */
  729. struct starpu_opencl_program programs;
  730. #endif
  731. int main(int argc, char **argv)
  732. @{
  733. float *vector;
  734. int i, ret;
  735. float factor=3.0;
  736. struct starpu_task *task;
  737. starpu_data_handle vector_handle;
  738. starpu_init(NULL); /* @b{Initialising StarPU} */
  739. #ifdef STARPU_USE_OPENCL
  740. starpu_opencl_load_opencl_from_file(
  741. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  742. &programs, NULL);
  743. #endif
  744. vector = malloc(NX*sizeof(vector[0]));
  745. assert(vector);
  746. for(i=0 ; i<NX ; i++) vector[i] = i;
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Registering data within StarPU} */
  752. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  753. NX, sizeof(vector[0]));
  754. /* @b{Definition of the task} */
  755. task = starpu_task_create();
  756. task->cl = &cl;
  757. task->buffers[0].handle = vector_handle;
  758. task->buffers[0].mode = STARPU_RW;
  759. task->cl_arg = &factor;
  760. task->cl_arg_size = sizeof(factor);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Submitting the task} */
  766. ret = starpu_task_submit(task);
  767. if (ret == -ENODEV) @{
  768. fprintf(stderr, "No worker may execute this task\n");
  769. return 1;
  770. @}
  771. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  772. /* @b{Waiting for its termination} */
  773. starpu_task_wait_for_all();
  774. /* @b{Update the vector in RAM} */
  775. starpu_data_acquire(vector_handle, STARPU_R);
  776. @end smallexample
  777. @end cartouche
  778. @cartouche
  779. @smallexample
  780. /* @b{Access the data} */
  781. for(i=0 ; i<NX; i++) @{
  782. fprintf(stderr, "%f ", vector[i]);
  783. @}
  784. fprintf(stderr, "\n");
  785. /* @b{Release the data and shutdown StarPU} */
  786. starpu_data_release(vector_handle);
  787. starpu_shutdown();
  788. return 0;
  789. @}
  790. @end smallexample
  791. @end cartouche
  792. @node Execution of Hybrid Vector Scaling
  793. @subsection Execution of Hybrid Vector Scaling
  794. The Makefile given at the beginning of the section must be extended to
  795. give the rules to compile the CUDA source code. Note that the source
  796. file of the OpenCL kernel does not need to be compiled now, it will
  797. be compiled at run-time when calling the function
  798. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  799. @cartouche
  800. @smallexample
  801. CFLAGS += $(shell pkg-config --cflags libstarpu)
  802. LDFLAGS += $(shell pkg-config --libs libstarpu)
  803. CC = gcc
  804. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  805. %.o: %.cu
  806. nvcc $(CFLAGS) $< -c $@
  807. clean:
  808. rm -f vector_scal *.o
  809. @end smallexample
  810. @end cartouche
  811. @smallexample
  812. % make
  813. @end smallexample
  814. and to execute it, with the default configuration:
  815. @smallexample
  816. % ./vector_scal
  817. 0.000000 3.000000 6.000000 9.000000 12.000000
  818. @end smallexample
  819. or for example, by disabling CPU devices:
  820. @smallexample
  821. % STARPU_NCPUS=0 ./vector_scal
  822. 0.000000 3.000000 6.000000 9.000000 12.000000
  823. @end smallexample
  824. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  825. see @ref{Using accelerators}):
  826. @smallexample
  827. % STARPU_NCUDA=0 ./vector_scal
  828. 0.000000 3.000000 6.000000 9.000000 12.000000
  829. @end smallexample
  830. @node Task and Worker Profiling
  831. @section Task and Worker Profiling
  832. A full example showing how to use the profiling API is available in
  833. the StarPU sources in the directory @code{examples/profiling/}.
  834. @cartouche
  835. @smallexample
  836. struct starpu_task *task = starpu_task_create();
  837. task->cl = &cl;
  838. task->synchronous = 1;
  839. /* We will destroy the task structure by hand so that we can
  840. * query the profiling info before the task is destroyed. */
  841. task->destroy = 0;
  842. /* Submit and wait for completion (since synchronous was set to 1) */
  843. starpu_task_submit(task);
  844. /* The task is finished, get profiling information */
  845. struct starpu_task_profiling_info *info = task->profiling_info;
  846. /* How much time did it take before the task started ? */
  847. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  848. /* How long was the task execution ? */
  849. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  850. /* We don't need the task structure anymore */
  851. starpu_task_destroy(task);
  852. @end smallexample
  853. @end cartouche
  854. @cartouche
  855. @smallexample
  856. /* Display the occupancy of all workers during the test */
  857. int worker;
  858. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  859. @{
  860. struct starpu_worker_profiling_info worker_info;
  861. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  862. STARPU_ASSERT(!ret);
  863. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  864. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  865. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  866. float executing_ratio = 100.0*executing_time/total_time;
  867. float sleeping_ratio = 100.0*sleeping_time/total_time;
  868. char workername[128];
  869. starpu_worker_get_name(worker, workername, 128);
  870. fprintf(stderr, "Worker %s:\n", workername);
  871. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  872. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  873. executing_ratio);
  874. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  875. sleeping_ratio);
  876. @}
  877. @end smallexample
  878. @end cartouche
  879. @node Partitioning Data
  880. @section Partitioning Data
  881. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  882. @cartouche
  883. @smallexample
  884. int vector[NX];
  885. starpu_data_handle handle;
  886. /* Declare data to StarPU */
  887. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  888. /* Partition the vector in PARTS sub-vectors */
  889. starpu_filter f =
  890. @{
  891. .filter_func = starpu_block_filter_func_vector,
  892. .nchildren = PARTS,
  893. .get_nchildren = NULL,
  894. .get_child_ops = NULL
  895. @};
  896. starpu_data_partition(handle, &f);
  897. @end smallexample
  898. @end cartouche
  899. @cartouche
  900. @smallexample
  901. /* Submit a task on each sub-vector */
  902. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  903. /* Get subdata number i (there is only 1 dimension) */
  904. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  905. struct starpu_task *task = starpu_task_create();
  906. task->buffers[0].handle = sub_handle;
  907. task->buffers[0].mode = STARPU_RW;
  908. task->cl = &cl;
  909. task->synchronous = 1;
  910. task->cl_arg = &factor;
  911. task->cl_arg_size = sizeof(factor);
  912. starpu_task_submit(task);
  913. @}
  914. @end smallexample
  915. @end cartouche
  916. Partitioning can be applied several times, see
  917. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  918. @node Performance model example
  919. @section Performance model example
  920. To achieve good scheduling, StarPU scheduling policies need to be able to
  921. estimate in advance the duration of a task. This is done by giving to codelets a
  922. performance model. There are several kinds of performance models.
  923. @itemize
  924. @item
  925. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  926. see for instance
  927. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  928. @item
  929. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  930. given set of data input/output sizes, the performance will always be about the
  931. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  932. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  933. few different sets of data input/output sizes. StarPU will then keep record of
  934. the average time of previous executions on the various processing units, and use
  935. it as an estimation. History is done per task size, by using a hash of the input
  936. and ouput sizes as an index.
  937. It will also save it in @code{~/.starpu/sampling/codelets}
  938. for further executions, and can be observed by using the
  939. @code{starpu_perfmodel_display} command. The following is a small code example.
  940. @cartouche
  941. @smallexample
  942. static struct starpu_perfmodel_t mult_perf_model = @{
  943. .type = STARPU_HISTORY_BASED,
  944. .symbol = "mult_perf_model"
  945. @};
  946. starpu_codelet cl = @{
  947. .where = STARPU_CPU,
  948. .cpu_func = cpu_mult,
  949. .nbuffers = 3,
  950. /* for the scheduling policy to be able to use performance models */
  951. .model = &mult_perf_model
  952. @};
  953. @end smallexample
  954. @end cartouche
  955. @item
  956. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  957. type). This still assumes performance regularity, but can work with various data
  958. input sizes, by applying a*n^b+c regression over observed execution times.
  959. @end itemize
  960. How to use schedulers which can benefit from such performance model is explained
  961. in @ref{Task scheduling policy}.
  962. The same can be done for task power consumption estimation, by setting the
  963. @code{power_model} field the same way as the @code{model} field. Note: for
  964. now, the application has to give to the power consumption performance model
  965. a name which is different from the execution time performance model.
  966. @node Theoretical lower bound on execution time
  967. @section Theoretical lower bound on execution time
  968. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  969. bound for the execution time of a whole set of tasks. See for
  970. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  971. call @code{starpu_bound_start}, and after complete execution, call
  972. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  973. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  974. problem corresponding to the schedule of your tasks. Run it through
  975. @code{lp_solve} or any other linear programming solver, and that will give you a
  976. lower bound for the total execution time of your tasks. If StarPU was compiled
  977. with the glpk library installed, @code{starpu_bound_compute} can be used to
  978. solve it immediately and get the optimized minimum. Its @code{integer}
  979. parameter allows to decide whether integer resolution should be computed
  980. and returned.
  981. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  982. dependencies into account. It must be understood that the linear programming
  983. problem size is quadratic with the number of tasks and thus the time to solve it
  984. will be very long, it could be minutes for just a few dozen tasks. You should
  985. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  986. problem to MPS format and then use a better solver, @code{glpsol} might be
  987. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  988. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  989. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  990. of @code{lp_solve}. For instance, we often just use
  991. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  992. the @code{-gr} option can also be quite useful.
  993. Setting @code{deps} to 0 will only take into account the actual computations
  994. on processing units. It however still properly takes into account the varying
  995. performances of kernels and processing units, which is quite more accurate than
  996. just comparing StarPU performances with the fastest of the kernels being used.
  997. The @code{prio} parameter tells StarPU whether to simulate taking into account
  998. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  999. tasks before less prioritized tasks, to check to which extend this results
  1000. to a less optimal solution. This increases even more computation time.
  1001. Note that for simplicity, all this however doesn't take into account data
  1002. transfers, which are assumed to be completely overlapped.
  1003. @node Insert Task Utility
  1004. @section Insert Task Utility
  1005. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1006. the creation and submission of tasks.
  1007. @deftypefun int starpu_insert_task (starpu_codelet *cl, ...)
  1008. Create and submit a task corresponding to @var{cl} with the following
  1009. arguments. The argument list must be zero-terminated.
  1010. The arguments following the codelets can be of the following types:
  1011. @itemize
  1012. @item
  1013. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  1014. @item
  1015. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1016. the size of the constant;
  1017. @item
  1018. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1019. @item
  1020. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1021. argument to the callback function;
  1022. @item
  1023. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1024. @end itemize
  1025. Parameters to be passed to the codelet implementation are defined
  1026. through the type @code{STARPU_VALUE}. The function
  1027. @code{starpu_unpack_cl_args} must be called within the codelet
  1028. implementation to retrieve them.
  1029. @end deftypefun
  1030. Here the implementation of the codelet:
  1031. @smallexample
  1032. void func_cpu(void *descr[], void *_args)
  1033. @{
  1034. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1035. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1036. int ifactor;
  1037. float ffactor;
  1038. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1039. *x0 = *x0 * ifactor;
  1040. *x1 = *x1 * ffactor;
  1041. @}
  1042. starpu_codelet mycodelet = @{
  1043. .where = STARPU_CPU,
  1044. .cpu_func = func_cpu,
  1045. .nbuffers = 2
  1046. @};
  1047. @end smallexample
  1048. And the call to the @code{starpu_insert_task} wrapper:
  1049. @smallexample
  1050. starpu_insert_task(&mycodelet,
  1051. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1052. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1053. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1054. 0);
  1055. @end smallexample
  1056. The call to @code{starpu_insert_task} is equivalent to the following
  1057. code:
  1058. @smallexample
  1059. struct starpu_task *task = starpu_task_create();
  1060. task->cl = &mycodelet;
  1061. task->buffers[0].handle = data_handles[0];
  1062. task->buffers[0].mode = STARPU_RW;
  1063. task->buffers[1].handle = data_handles[1];
  1064. task->buffers[1].mode = STARPU_RW;
  1065. char *arg_buffer;
  1066. size_t arg_buffer_size;
  1067. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1068. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1069. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1070. 0);
  1071. task->cl_arg = arg_buffer;
  1072. task->cl_arg_size = arg_buffer_size;
  1073. int ret = starpu_task_submit(task);
  1074. @end smallexample
  1075. @node More examples
  1076. @section More examples
  1077. More examples are available in the StarPU sources in the @code{examples/}
  1078. directory. Simple examples include:
  1079. @table @asis
  1080. @item @code{incrementer/}:
  1081. Trivial incrementation test.
  1082. @item @code{basic_examples/}:
  1083. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1084. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1085. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1086. interface, and an example using the variable data interface.
  1087. @item @code{matvecmult/}:
  1088. OpenCL example from NVidia, adapted to StarPU.
  1089. @item @code{axpy/}:
  1090. AXPY CUBLAS operation adapted to StarPU.
  1091. @item @code{fortran/}:
  1092. Example of Fortran bindings.
  1093. @end table
  1094. More advanced examples include:
  1095. @table @asis
  1096. @item @code{filters/}:
  1097. Examples using filters, as shown in @ref{Partitioning Data}.
  1098. @item @code{lu/}:
  1099. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1100. @item @code{cholesky/}:
  1101. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1102. @end table
  1103. @c ---------------------------------------------------------------------
  1104. @c Performance options
  1105. @c ---------------------------------------------------------------------
  1106. @node Performance optimization
  1107. @chapter How to optimize performance with StarPU
  1108. TODO: improve!
  1109. @menu
  1110. * Data management::
  1111. * Task submission::
  1112. * Task priorities::
  1113. * Task scheduling policy::
  1114. * Task distribution vs Data transfer::
  1115. * Power-based scheduling::
  1116. * Profiling::
  1117. * CUDA-specific optimizations::
  1118. @end menu
  1119. Simply encapsulating application kernels into tasks already permits to
  1120. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1121. few additional changes are needed.
  1122. @node Data management
  1123. @section Data management
  1124. @c By default, StarPU does not enable data prefetching, because CUDA does
  1125. @c not announce when too many data transfers were scheduled and can thus block
  1126. @c unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1127. @c .
  1128. By default, StarPU leaves replicates of data wherever they were used, in case they
  1129. will be re-used by other tasks, thus saving the data transfer time. When some
  1130. task modifies some data, all the other replicates are invalidated, and only the
  1131. processing unit will have a valid replicate of the data. If the application knows
  1132. that this data will not be re-used by further tasks, it should advise StarPU to
  1133. immediately replicate it to a desired list of memory nodes (given through a
  1134. bitmask). This can be understood like the write-through mode of CPU caches.
  1135. @example
  1136. starpu_data_set_wt_mask(img_handle, 1<<0);
  1137. @end example
  1138. will for instance request to always transfer a replicate into the main memory (node
  1139. 0), as bit 0 of the write-through bitmask is being set.
  1140. When the application allocates data, whenever possible it should use the
  1141. @code{starpu_malloc} function, which will ask CUDA or
  1142. OpenCL to make the allocation itself and pin the corresponding allocated
  1143. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1144. transfer to overlap with computations.
  1145. @node Task submission
  1146. @section Task submission
  1147. To let StarPU make online optimizations, tasks should be submitted
  1148. asynchronously as much as possible. Ideally, all the tasks should be
  1149. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1150. @code{starpu_data_acquire} be done to wait for
  1151. termination. StarPU will then be able to rework the whole schedule, overlap
  1152. computation with communication, manage accelerator local memory usage, etc.
  1153. @node Task priorities
  1154. @section Task priorities
  1155. By default, StarPU will consider the tasks in the order they are submitted by
  1156. the application. If the application programmer knows that some tasks should
  1157. be performed in priority (for instance because their output is needed by many
  1158. other tasks and may thus be a bottleneck if not executed early enough), the
  1159. @code{priority} field of the task structure should be set to transmit the
  1160. priority information to StarPU.
  1161. @node Task scheduling policy
  1162. @section Task scheduling policy
  1163. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1164. because it provides correct load balance even if the application codelets do not
  1165. have performance models. If your application codelets have performance models
  1166. (@pxref{Performance model example} for examples showing how to do it),
  1167. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1168. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1169. the list of available schedulers.
  1170. @c TODO: give some details about each scheduler.
  1171. Most schedulers are based on an estimation of codelet duration on each kind
  1172. of processing unit. For this to be possible, the application programmer needs
  1173. to configure a performance model for the codelets of the application (see
  1174. @ref{Performance model example} for instance). History-based performance models
  1175. use on-line calibration. StarPU will automatically calibrate codelets
  1176. which have never been calibrated yet. To force continuing calibration, use
  1177. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1178. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1179. Note: due to CUDA limitations, to be able to measure kernel duration,
  1180. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1181. disables data transfer / computation overlapping, and should thus not be used
  1182. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1183. only if a performance-model-based scheduler is chosen.
  1184. @node Task distribution vs Data transfer
  1185. @section Task distribution vs Data transfer
  1186. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1187. thus needs to find a balance between both. The target function that the
  1188. @code{dmda} scheduler of StarPU
  1189. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1190. @code{T_execution} is the estimated execution time of the codelet (usually
  1191. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1192. latter is however estimated based on bus calibration before execution start,
  1193. i.e. with an idle machine. You can force bus re-calibration by running
  1194. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1195. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1196. This is of course imprecise, but in practice, a rough estimation already gives
  1197. the good results that a precise estimation would give.
  1198. @node Power-based scheduling
  1199. @section Power-based scheduling
  1200. If the application can provide some power performance model (through
  1201. the @code{power_model} field of the codelet structure), StarPU will
  1202. take it into account when distributing tasks. The target function that
  1203. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1204. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1205. is the estimated task consumption in Joules. To tune this parameter, use
  1206. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1207. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1208. alpha and beta to zero permits to only take into account power consumption.
  1209. This is however not sufficient to correctly optimize power: the scheduler would
  1210. simply tend to run all computations on the most energy-conservative processing
  1211. unit. To account for the consumption of the whole machine (including idle
  1212. processing units), the idle power of the machine should be given by setting
  1213. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1214. be obtained from the machine power supplier.
  1215. The power actually consumed by the total execution can be displayed by setting
  1216. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1217. @node Profiling
  1218. @section Profiling
  1219. A quick view of how many tasks each worker has executed can be obtained by setting
  1220. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1221. execution did happen on accelerators without penalizing performance with
  1222. the profiling overhead.
  1223. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1224. calling @code{starpu_profiling_status_set} from the source code.
  1225. Statistics on the execution can then be obtained by using @code{export
  1226. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1227. More details on performance feedback are provided by the next chapter.
  1228. @node CUDA-specific optimizations
  1229. @section CUDA-specific optimizations
  1230. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1231. communications and the codelet computations if the application does not use a
  1232. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1233. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1234. operations. For instance:
  1235. @example
  1236. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1237. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1238. @end example
  1239. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1240. kernels. That will lower the potential for overlapping.
  1241. @c ---------------------------------------------------------------------
  1242. @c Performance feedback
  1243. @c ---------------------------------------------------------------------
  1244. @node Performance feedback
  1245. @chapter Performance feedback
  1246. @menu
  1247. * On-line:: On-line performance feedback
  1248. * Off-line:: Off-line performance feedback
  1249. * Codelet performance:: Performance of codelets
  1250. @end menu
  1251. @node On-line
  1252. @section On-line performance feedback
  1253. @menu
  1254. * Enabling monitoring:: Enabling on-line performance monitoring
  1255. * Task feedback:: Per-task feedback
  1256. * Codelet feedback:: Per-codelet feedback
  1257. * Worker feedback:: Per-worker feedback
  1258. * Bus feedback:: Bus-related feedback
  1259. @end menu
  1260. @node Enabling monitoring
  1261. @subsection Enabling on-line performance monitoring
  1262. In order to enable online performance monitoring, the application can call
  1263. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1264. detect whether monitoring is already enabled or not by calling
  1265. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1266. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1267. can also be set to 1 to achieve the same effect.
  1268. Likewise, performance monitoring is stopped by calling
  1269. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1270. does not reset the performance counters so that the application may consult
  1271. them later on.
  1272. More details about the performance monitoring API are available in section
  1273. @ref{Profiling API}.
  1274. @node Task feedback
  1275. @subsection Per-task feedback
  1276. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1277. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1278. structure when a task terminates.
  1279. This structure is automatically destroyed when the task structure is destroyed,
  1280. either automatically or by calling @code{starpu_task_destroy}.
  1281. The @code{starpu_task_profiling_info} structure indicates the date when the
  1282. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1283. terminated (@code{end_time}), relative to the initialization of
  1284. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1285. that has executed the task (@code{workerid}).
  1286. These date are stored as @code{timespec} structures which the user may convert
  1287. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1288. function.
  1289. It it worth noting that the application may directly access this structure from
  1290. the callback executed at the end of the task. The @code{starpu_task} structure
  1291. associated to the callback currently being executed is indeed accessible with
  1292. the @code{starpu_get_current_task()} function.
  1293. @node Codelet feedback
  1294. @subsection Per-codelet feedback
  1295. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1296. an array of counters. The i-th entry of the array is incremented every time a
  1297. task implementing the codelet is executed on the i-th worker.
  1298. This array is not reinitialized when profiling is enabled or disabled.
  1299. @node Worker feedback
  1300. @subsection Per-worker feedback
  1301. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1302. function is a @code{starpu_worker_profiling_info} structure that gives
  1303. statistics about the specified worker. This structure specifies when StarPU
  1304. started collecting profiling information for that worker (@code{start_time}),
  1305. the duration of the profiling measurement interval (@code{total_time}), the
  1306. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1307. because there is no task to execute at all (@code{sleeping_time}), and the
  1308. number of tasks that were executed while profiling was enabled.
  1309. These values give an estimation of the proportion of time spent do real work,
  1310. and the time spent either sleeping because there are not enough executable
  1311. tasks or simply wasted in pure StarPU overhead.
  1312. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1313. information associated to a worker.
  1314. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1315. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1316. generate a graphic showing the evolution of these values during the time, for
  1317. the different workers.
  1318. @node Bus feedback
  1319. @subsection Bus-related feedback
  1320. TODO
  1321. @c how to enable/disable performance monitoring
  1322. @c what kind of information do we get ?
  1323. @node Off-line
  1324. @section Off-line performance feedback
  1325. @menu
  1326. * Generating traces:: Generating traces with FxT
  1327. * Gantt diagram:: Creating a Gantt Diagram
  1328. * DAG:: Creating a DAG with graphviz
  1329. * starpu-top:: Monitoring activity
  1330. @end menu
  1331. @node Generating traces
  1332. @subsection Generating traces with FxT
  1333. StarPU can use the FxT library (see
  1334. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1335. with a limited runtime overhead.
  1336. You can either get the FxT library from CVS (autotools are required):
  1337. @example
  1338. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1339. % ./bootstrap
  1340. @end example
  1341. If autotools are not available on your machine, or if you prefer to do so,
  1342. FxT's code is also available as a tarball:
  1343. @example
  1344. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1345. @end example
  1346. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1347. done following the standard procedure:
  1348. @example
  1349. % ./configure --prefix=$FXTDIR
  1350. % make
  1351. % make install
  1352. @end example
  1353. In order to have StarPU to generate traces, StarPU should be configured with
  1354. the @code{--with-fxt} option:
  1355. @example
  1356. $ ./configure --with-fxt=$FXTDIR
  1357. @end example
  1358. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1359. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1360. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1361. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1362. @code{/tmp/} directory by default, or by the directory specified by
  1363. the @code{STARPU_FXT_PREFIX} environment variable.
  1364. @node Gantt diagram
  1365. @subsection Creating a Gantt Diagram
  1366. When the FxT trace file @code{filename} has been generated, it is possible to
  1367. generate a trace in the Paje format by calling:
  1368. @example
  1369. % starpu_fxt_tool -i filename
  1370. @end example
  1371. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1372. to 1 before application execution will make StarPU do it automatically at
  1373. application shutdown.
  1374. This will create a @code{paje.trace} file in the current directory that can be
  1375. inspected with the ViTE trace visualizing open-source tool. More information
  1376. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1377. possible to open the @code{paje.trace} file with ViTE by using the following
  1378. command:
  1379. @example
  1380. % vite paje.trace
  1381. @end example
  1382. @node DAG
  1383. @subsection Creating a DAG with graphviz
  1384. When the FxT trace file @code{filename} has been generated, it is possible to
  1385. generate a task graph in the DOT format by calling:
  1386. @example
  1387. $ starpu_fxt_tool -i filename
  1388. @end example
  1389. This will create a @code{dag.dot} file in the current directory. This file is a
  1390. task graph described using the DOT language. It is possible to get a
  1391. graphical output of the graph by using the graphviz library:
  1392. @example
  1393. $ dot -Tpdf dag.dot -o output.pdf
  1394. @end example
  1395. @node starpu-top
  1396. @subsection Monitoring activity
  1397. When the FxT trace file @code{filename} has been generated, it is possible to
  1398. generate a activity trace by calling:
  1399. @example
  1400. $ starpu_fxt_tool -i filename
  1401. @end example
  1402. This will create an @code{activity.data} file in the current
  1403. directory. A profile of the application showing the activity of StarPU
  1404. during the execution of the program can be generated:
  1405. @example
  1406. $ starpu_top.sh activity.data
  1407. @end example
  1408. This will create a file named @code{activity.eps} in the current directory.
  1409. This picture is composed of two parts.
  1410. The first part shows the activity of the different workers. The green sections
  1411. indicate which proportion of the time was spent executed kernels on the
  1412. processing unit. The red sections indicate the proportion of time spent in
  1413. StartPU: an important overhead may indicate that the granularity may be too
  1414. low, and that bigger tasks may be appropriate to use the processing unit more
  1415. efficiently. The black sections indicate that the processing unit was blocked
  1416. because there was no task to process: this may indicate a lack of parallelism
  1417. which may be alleviated by creating more tasks when it is possible.
  1418. The second part of the @code{activity.eps} picture is a graph showing the
  1419. evolution of the number of tasks available in the system during the execution.
  1420. Ready tasks are shown in black, and tasks that are submitted but not
  1421. schedulable yet are shown in grey.
  1422. @node Codelet performance
  1423. @section Performance of codelets
  1424. The performance model of codelets can be examined by using the
  1425. @code{starpu_perfmodel_display} tool:
  1426. @example
  1427. $ starpu_perfmodel_display -l
  1428. file: <malloc_pinned.hannibal>
  1429. file: <starpu_slu_lu_model_21.hannibal>
  1430. file: <starpu_slu_lu_model_11.hannibal>
  1431. file: <starpu_slu_lu_model_22.hannibal>
  1432. file: <starpu_slu_lu_model_12.hannibal>
  1433. @end example
  1434. Here, the codelets of the lu example are available. We can examine the
  1435. performance of the 22 kernel:
  1436. @example
  1437. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1438. performance model for cpu
  1439. # hash size mean dev n
  1440. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1441. performance model for cuda_0
  1442. # hash size mean dev n
  1443. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1444. performance model for cuda_1
  1445. # hash size mean dev n
  1446. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1447. performance model for cuda_2
  1448. # hash size mean dev n
  1449. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1450. @end example
  1451. We can see that for the given size, over a sample of a few hundreds of
  1452. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1453. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1454. CPUs.
  1455. @c ---------------------------------------------------------------------
  1456. @c MPI support
  1457. @c ---------------------------------------------------------------------
  1458. @node StarPU MPI support
  1459. @chapter StarPU MPI support
  1460. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1461. @c ---------------------------------------------------------------------
  1462. @c Configuration options
  1463. @c ---------------------------------------------------------------------
  1464. @node Configuring StarPU
  1465. @chapter Configuring StarPU
  1466. @menu
  1467. * Compilation configuration::
  1468. * Execution configuration through environment variables::
  1469. @end menu
  1470. @node Compilation configuration
  1471. @section Compilation configuration
  1472. The following arguments can be given to the @code{configure} script.
  1473. @menu
  1474. * Common configuration::
  1475. * Configuring workers::
  1476. * Advanced configuration::
  1477. @end menu
  1478. @node Common configuration
  1479. @subsection Common configuration
  1480. @menu
  1481. * --enable-debug::
  1482. * --enable-fast::
  1483. * --enable-verbose::
  1484. * --enable-coverage::
  1485. @end menu
  1486. @node --enable-debug
  1487. @subsubsection @code{--enable-debug}
  1488. @table @asis
  1489. @item @emph{Description}:
  1490. Enable debugging messages.
  1491. @end table
  1492. @node --enable-fast
  1493. @subsubsection @code{--enable-fast}
  1494. @table @asis
  1495. @item @emph{Description}:
  1496. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1497. @end table
  1498. @node --enable-verbose
  1499. @subsubsection @code{--enable-verbose}
  1500. @table @asis
  1501. @item @emph{Description}:
  1502. Augment the verbosity of the debugging messages. This can be disabled
  1503. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1504. any value.
  1505. @smallexample
  1506. % STARPU_SILENT=1 ./vector_scal
  1507. @end smallexample
  1508. @end table
  1509. @node --enable-coverage
  1510. @subsubsection @code{--enable-coverage}
  1511. @table @asis
  1512. @item @emph{Description}:
  1513. Enable flags for the @code{gcov} coverage tool.
  1514. @end table
  1515. @node Configuring workers
  1516. @subsection Configuring workers
  1517. @menu
  1518. * --enable-nmaxcpus::
  1519. * --disable-cpu::
  1520. * --enable-maxcudadev::
  1521. * --disable-cuda::
  1522. * --with-cuda-dir::
  1523. * --with-cuda-include-dir::
  1524. * --with-cuda-lib-dir::
  1525. * --enable-maxopencldev::
  1526. * --disable-opencl::
  1527. * --with-opencl-dir::
  1528. * --with-opencl-include-dir::
  1529. * --with-opencl-lib-dir::
  1530. * --enable-gordon::
  1531. * --with-gordon-dir::
  1532. @end menu
  1533. @node --enable-nmaxcpus
  1534. @subsubsection @code{--enable-nmaxcpus=<number>}
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. Defines the maximum number of CPU cores that StarPU will support, then
  1538. available as the @code{STARPU_NMAXCPUS} macro.
  1539. @end table
  1540. @node --disable-cpu
  1541. @subsubsection @code{--disable-cpu}
  1542. @table @asis
  1543. @item @emph{Description}:
  1544. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1545. @end table
  1546. @node --enable-maxcudadev
  1547. @subsubsection @code{--enable-maxcudadev=<number>}
  1548. @table @asis
  1549. @item @emph{Description}:
  1550. Defines the maximum number of CUDA devices that StarPU will support, then
  1551. available as the @code{STARPU_MAXCUDADEVS} macro.
  1552. @end table
  1553. @node --disable-cuda
  1554. @subsubsection @code{--disable-cuda}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1558. @end table
  1559. @node --with-cuda-dir
  1560. @subsubsection @code{--with-cuda-dir=<path>}
  1561. @table @asis
  1562. @item @emph{Description}:
  1563. Specify the directory where CUDA is installed. This directory should notably contain
  1564. @code{include/cuda.h}.
  1565. @end table
  1566. @node --with-cuda-include-dir
  1567. @subsubsection @code{--with-cuda-include-dir=<path>}
  1568. @table @asis
  1569. @item @emph{Description}:
  1570. Specify the directory where CUDA headers are installed. This directory should
  1571. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1572. value given to @code{--with-cuda-dir}.
  1573. @end table
  1574. @node --with-cuda-lib-dir
  1575. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1576. @table @asis
  1577. @item @emph{Description}:
  1578. Specify the directory where the CUDA library is installed. This directory should
  1579. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1580. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1581. @end table
  1582. @node --enable-maxopencldev
  1583. @subsubsection @code{--enable-maxopencldev=<number>}
  1584. @table @asis
  1585. @item @emph{Description}:
  1586. Defines the maximum number of OpenCL devices that StarPU will support, then
  1587. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1588. @end table
  1589. @node --disable-opencl
  1590. @subsubsection @code{--disable-opencl}
  1591. @table @asis
  1592. @item @emph{Description}:
  1593. Disable the use of OpenCL, even if the SDK is detected.
  1594. @end table
  1595. @node --with-opencl-dir
  1596. @subsubsection @code{--with-opencl-dir=<path>}
  1597. @table @asis
  1598. @item @emph{Description}:
  1599. Specify the location of the OpenCL SDK. This directory should notably contain
  1600. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1601. @end table
  1602. @node --with-opencl-include-dir
  1603. @subsubsection @code{--with-opencl-include-dir=<path>}
  1604. @table @asis
  1605. @item @emph{Description}:
  1606. Specify the location of OpenCL headers. This directory should notably contain
  1607. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1608. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1609. @end table
  1610. @node --with-opencl-lib-dir
  1611. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1612. @table @asis
  1613. @item @emph{Description}:
  1614. Specify the location of the OpenCL library. This directory should notably
  1615. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1616. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1617. @end table
  1618. @node --enable-gordon
  1619. @subsubsection @code{--enable-gordon}
  1620. @table @asis
  1621. @item @emph{Description}:
  1622. Enable the use of the Gordon runtime for Cell SPUs.
  1623. @c TODO: rather default to enabled when detected
  1624. @end table
  1625. @node --with-gordon-dir
  1626. @subsubsection @code{--with-gordon-dir=<path>}
  1627. @table @asis
  1628. @item @emph{Description}:
  1629. Specify the location of the Gordon SDK.
  1630. @end table
  1631. @node Advanced configuration
  1632. @subsection Advanced configuration
  1633. @menu
  1634. * --enable-perf-debug::
  1635. * --enable-model-debug::
  1636. * --enable-stats::
  1637. * --enable-maxbuffers::
  1638. * --enable-allocation-cache::
  1639. * --enable-opengl-render::
  1640. * --enable-blas-lib::
  1641. * --with-magma::
  1642. * --with-fxt::
  1643. * --with-perf-model-dir::
  1644. * --with-mpicc::
  1645. * --with-goto-dir::
  1646. * --with-atlas-dir::
  1647. * --with-mkl-cflags::
  1648. * --with-mkl-ldflags::
  1649. @end menu
  1650. @node --enable-perf-debug
  1651. @subsubsection @code{--enable-perf-debug}
  1652. @table @asis
  1653. @item @emph{Description}:
  1654. Enable performance debugging.
  1655. @end table
  1656. @node --enable-model-debug
  1657. @subsubsection @code{--enable-model-debug}
  1658. @table @asis
  1659. @item @emph{Description}:
  1660. Enable performance model debugging.
  1661. @end table
  1662. @node --enable-stats
  1663. @subsubsection @code{--enable-stats}
  1664. @table @asis
  1665. @item @emph{Description}:
  1666. Enable statistics.
  1667. @end table
  1668. @node --enable-maxbuffers
  1669. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1670. @table @asis
  1671. @item @emph{Description}:
  1672. Define the maximum number of buffers that tasks will be able to take
  1673. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1674. @end table
  1675. @node --enable-allocation-cache
  1676. @subsubsection @code{--enable-allocation-cache}
  1677. @table @asis
  1678. @item @emph{Description}:
  1679. Enable the use of a data allocation cache to avoid the cost of it with
  1680. CUDA. Still experimental.
  1681. @end table
  1682. @node --enable-opengl-render
  1683. @subsubsection @code{--enable-opengl-render}
  1684. @table @asis
  1685. @item @emph{Description}:
  1686. Enable the use of OpenGL for the rendering of some examples.
  1687. @c TODO: rather default to enabled when detected
  1688. @end table
  1689. @node --enable-blas-lib
  1690. @subsubsection @code{--enable-blas-lib=<name>}
  1691. @table @asis
  1692. @item @emph{Description}:
  1693. Specify the blas library to be used by some of the examples. The
  1694. library has to be 'atlas' or 'goto'.
  1695. @end table
  1696. @node --with-magma
  1697. @subsubsection @code{--with-magma=<path>}
  1698. @table @asis
  1699. @item @emph{Description}:
  1700. Specify where magma is installed. This directory should notably contain
  1701. @code{include/magmablas.h}.
  1702. @end table
  1703. @node --with-fxt
  1704. @subsubsection @code{--with-fxt=<path>}
  1705. @table @asis
  1706. @item @emph{Description}:
  1707. Specify the location of FxT (for generating traces and rendering them
  1708. using ViTE). This directory should notably contain
  1709. @code{include/fxt/fxt.h}.
  1710. @c TODO add ref to other section
  1711. @end table
  1712. @node --with-perf-model-dir
  1713. @subsubsection @code{--with-perf-model-dir=<dir>}
  1714. @table @asis
  1715. @item @emph{Description}:
  1716. Specify where performance models should be stored (instead of defaulting to the
  1717. current user's home).
  1718. @end table
  1719. @node --with-mpicc
  1720. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1721. @table @asis
  1722. @item @emph{Description}:
  1723. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1724. @end table
  1725. @node --with-goto-dir
  1726. @subsubsection @code{--with-goto-dir=<dir>}
  1727. @table @asis
  1728. @item @emph{Description}:
  1729. Specify the location of GotoBLAS.
  1730. @end table
  1731. @node --with-atlas-dir
  1732. @subsubsection @code{--with-atlas-dir=<dir>}
  1733. @table @asis
  1734. @item @emph{Description}:
  1735. Specify the location of ATLAS. This directory should notably contain
  1736. @code{include/cblas.h}.
  1737. @end table
  1738. @node --with-mkl-cflags
  1739. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1740. @table @asis
  1741. @item @emph{Description}:
  1742. Specify the compilation flags for the MKL Library.
  1743. @end table
  1744. @node --with-mkl-ldflags
  1745. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1746. @table @asis
  1747. @item @emph{Description}:
  1748. Specify the linking flags for the MKL Library. Note that the
  1749. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1750. website provides a script to determine the linking flags.
  1751. @end table
  1752. @c ---------------------------------------------------------------------
  1753. @c Environment variables
  1754. @c ---------------------------------------------------------------------
  1755. @node Execution configuration through environment variables
  1756. @section Execution configuration through environment variables
  1757. @menu
  1758. * Workers:: Configuring workers
  1759. * Scheduling:: Configuring the Scheduling engine
  1760. * Misc:: Miscellaneous and debug
  1761. @end menu
  1762. Note: the values given in @code{starpu_conf} structure passed when
  1763. calling @code{starpu_init} will override the values of the environment
  1764. variables.
  1765. @node Workers
  1766. @subsection Configuring workers
  1767. @menu
  1768. * STARPU_NCPUS:: Number of CPU workers
  1769. * STARPU_NCUDA:: Number of CUDA workers
  1770. * STARPU_NOPENCL:: Number of OpenCL workers
  1771. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1772. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1773. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1774. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1775. @end menu
  1776. @node STARPU_NCPUS
  1777. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1778. @table @asis
  1779. @item @emph{Description}:
  1780. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1781. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1782. the accelerators.
  1783. @end table
  1784. @node STARPU_NCUDA
  1785. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1786. @table @asis
  1787. @item @emph{Description}:
  1788. Specify the number of CUDA devices that StarPU can use. If
  1789. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1790. possible to select which CUDA devices should be used by the means of the
  1791. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1792. create as many CUDA workers as there are CUDA devices.
  1793. @end table
  1794. @node STARPU_NOPENCL
  1795. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1796. @table @asis
  1797. @item @emph{Description}:
  1798. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1799. @end table
  1800. @node STARPU_NGORDON
  1801. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1802. @table @asis
  1803. @item @emph{Description}:
  1804. Specify the number of SPUs that StarPU can use.
  1805. @end table
  1806. @node STARPU_WORKERS_CPUID
  1807. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1808. @table @asis
  1809. @item @emph{Description}:
  1810. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1811. specifies on which logical CPU the different workers should be
  1812. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1813. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1814. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1815. determined by the OS, or provided by the @code{hwloc} library in case it is
  1816. available.
  1817. Note that the first workers correspond to the CUDA workers, then come the
  1818. OpenCL and the SPU, and finally the CPU workers. For example if
  1819. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1820. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1821. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1822. the logical CPUs #1 and #3 will be used by the CPU workers.
  1823. If the number of workers is larger than the array given in
  1824. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1825. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1826. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1827. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1828. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1829. @end table
  1830. @node STARPU_WORKERS_CUDAID
  1831. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1832. @table @asis
  1833. @item @emph{Description}:
  1834. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1835. possible to select which CUDA devices should be used by StarPU. On a machine
  1836. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1837. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1838. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1839. the one reported by CUDA).
  1840. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1841. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1842. @end table
  1843. @node STARPU_WORKERS_OPENCLID
  1844. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1845. @table @asis
  1846. @item @emph{Description}:
  1847. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1848. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1849. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1850. @end table
  1851. @node Scheduling
  1852. @subsection Configuring the Scheduling engine
  1853. @menu
  1854. * STARPU_SCHED:: Scheduling policy
  1855. * STARPU_CALIBRATE:: Calibrate performance models
  1856. * STARPU_PREFETCH:: Use data prefetch
  1857. * STARPU_SCHED_ALPHA:: Computation factor
  1858. * STARPU_SCHED_BETA:: Communication factor
  1859. @end menu
  1860. @node STARPU_SCHED
  1861. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1862. @table @asis
  1863. @item @emph{Description}:
  1864. This chooses between the different scheduling policies proposed by StarPU: work
  1865. random, stealing, greedy, with performance models, etc.
  1866. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1867. @end table
  1868. @node STARPU_CALIBRATE
  1869. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1870. @table @asis
  1871. @item @emph{Description}:
  1872. If this variable is set to 1, the performance models are calibrated during
  1873. the execution. If it is set to 2, the previous values are dropped to restart
  1874. calibration from scratch. Setting this variable to 0 disable calibration, this
  1875. is the default behaviour.
  1876. Note: this currently only applies to dm, dmda and heft scheduling policies.
  1877. @end table
  1878. @node STARPU_PREFETCH
  1879. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1880. @table @asis
  1881. @item @emph{Description}:
  1882. This variable indicates whether data prefetching should be enabled (0 means
  1883. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1884. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1885. advance, so that data is already present on the GPU when the task starts. As a
  1886. result, computation and data transfers are overlapped.
  1887. Note that prefetching is enabled by default in StarPU.
  1888. @end table
  1889. @node STARPU_SCHED_ALPHA
  1890. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1891. @table @asis
  1892. @item @emph{Description}:
  1893. To estimate the cost of a task StarPU takes into account the estimated
  1894. computation time (obtained thanks to performance models). The alpha factor is
  1895. the coefficient to be applied to it before adding it to the communication part.
  1896. @end table
  1897. @node STARPU_SCHED_BETA
  1898. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1899. @table @asis
  1900. @item @emph{Description}:
  1901. To estimate the cost of a task StarPU takes into account the estimated
  1902. data transfer time (obtained thanks to performance models). The beta factor is
  1903. the coefficient to be applied to it before adding it to the computation part.
  1904. @end table
  1905. @node Misc
  1906. @subsection Miscellaneous and debug
  1907. @menu
  1908. * STARPU_SILENT:: Disable verbose mode
  1909. * STARPU_LOGFILENAME:: Select debug file name
  1910. * STARPU_FXT_PREFIX:: FxT trace location
  1911. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1912. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1913. @end menu
  1914. @node STARPU_SILENT
  1915. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1916. @table @asis
  1917. @item @emph{Description}:
  1918. This variable allows to disable verbose mode at runtime when StarPU
  1919. has been configured with the option @code{--enable-verbose}.
  1920. @end table
  1921. @node STARPU_LOGFILENAME
  1922. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1923. @table @asis
  1924. @item @emph{Description}:
  1925. This variable specifies in which file the debugging output should be saved to.
  1926. @end table
  1927. @node STARPU_FXT_PREFIX
  1928. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1929. @table @asis
  1930. @item @emph{Description}
  1931. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1932. @end table
  1933. @node STARPU_LIMIT_GPU_MEM
  1934. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1935. @table @asis
  1936. @item @emph{Description}
  1937. This variable specifies the maximum number of megabytes that should be
  1938. available to the application on each GPUs. In case this value is smaller than
  1939. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1940. on the device. This variable is intended to be used for experimental purposes
  1941. as it emulates devices that have a limited amount of memory.
  1942. @end table
  1943. @node STARPU_GENERATE_TRACE
  1944. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1945. @table @asis
  1946. @item @emph{Description}
  1947. When set to 1, this variable indicates that StarPU should automatically
  1948. generate a Paje trace when starpu_shutdown is called.
  1949. @end table
  1950. @c ---------------------------------------------------------------------
  1951. @c StarPU API
  1952. @c ---------------------------------------------------------------------
  1953. @node StarPU API
  1954. @chapter StarPU API
  1955. @menu
  1956. * Initialization and Termination:: Initialization and Termination methods
  1957. * Workers' Properties:: Methods to enumerate workers' properties
  1958. * Data Library:: Methods to manipulate data
  1959. * Data Interfaces::
  1960. * Data Partition::
  1961. * Codelets and Tasks:: Methods to construct tasks
  1962. * Explicit Dependencies:: Explicit Dependencies
  1963. * Implicit Data Dependencies:: Implicit Data Dependencies
  1964. * Performance Model API::
  1965. * Profiling API:: Profiling API
  1966. * CUDA extensions:: CUDA extensions
  1967. * OpenCL extensions:: OpenCL extensions
  1968. * Cell extensions:: Cell extensions
  1969. * Miscellaneous helpers::
  1970. @end menu
  1971. @node Initialization and Termination
  1972. @section Initialization and Termination
  1973. @menu
  1974. * starpu_init:: Initialize StarPU
  1975. * struct starpu_conf:: StarPU runtime configuration
  1976. * starpu_conf_init:: Initialize starpu_conf structure
  1977. * starpu_shutdown:: Terminate StarPU
  1978. @end menu
  1979. @node starpu_init
  1980. @subsection @code{starpu_init} -- Initialize StarPU
  1981. @table @asis
  1982. @item @emph{Description}:
  1983. This is StarPU initialization method, which must be called prior to any other
  1984. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1985. policy, number of cores, ...) by passing a non-null argument. Default
  1986. configuration is used if the passed argument is @code{NULL}.
  1987. @item @emph{Return value}:
  1988. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1989. indicates that no worker was available (so that StarPU was not initialized).
  1990. @item @emph{Prototype}:
  1991. @code{int starpu_init(struct starpu_conf *conf);}
  1992. @end table
  1993. @node struct starpu_conf
  1994. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1995. @table @asis
  1996. @item @emph{Description}:
  1997. This structure is passed to the @code{starpu_init} function in order
  1998. to configure StarPU.
  1999. When the default value is used, StarPU automatically selects the number
  2000. of processing units and takes the default scheduling policy. This parameter
  2001. overwrites the equivalent environment variables.
  2002. @item @emph{Fields}:
  2003. @table @asis
  2004. @item @code{sched_policy_name} (default = NULL):
  2005. This is the name of the scheduling policy. This can also be specified with the
  2006. @code{STARPU_SCHED} environment variable.
  2007. @item @code{sched_policy} (default = NULL):
  2008. This is the definition of the scheduling policy. This field is ignored
  2009. if @code{sched_policy_name} is set.
  2010. @item @code{ncpus} (default = -1):
  2011. This is the number of CPU cores that StarPU can use. This can also be
  2012. specified with the @code{STARPU_NCPUS} environment variable.
  2013. @item @code{ncuda} (default = -1):
  2014. This is the number of CUDA devices that StarPU can use. This can also be
  2015. specified with the @code{STARPU_NCUDA} environment variable.
  2016. @item @code{nopencl} (default = -1):
  2017. This is the number of OpenCL devices that StarPU can use. This can also be
  2018. specified with the @code{STARPU_NOPENCL} environment variable.
  2019. @item @code{nspus} (default = -1):
  2020. This is the number of Cell SPUs that StarPU can use. This can also be
  2021. specified with the @code{STARPU_NGORDON} environment variable.
  2022. @item @code{use_explicit_workers_bindid} (default = 0)
  2023. If this flag is set, the @code{workers_bindid} array indicates where the
  2024. different workers are bound, otherwise StarPU automatically selects where to
  2025. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2026. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2027. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2028. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2029. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2030. where to bind the different workers. The i-th entry of the
  2031. @code{workers_bindid} indicates the logical identifier of the processor which
  2032. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2033. either determined by the OS, or provided by the @code{hwloc} library in case it
  2034. is available.
  2035. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2036. ignored.
  2037. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2038. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2039. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2040. CUDA devices in a round-robin fashion.
  2041. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2042. ignored.
  2043. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2044. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2045. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2046. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2047. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2048. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2049. OpenCL devices in a round-robin fashion.
  2050. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2051. @item @code{calibrate} (default = 0):
  2052. If this flag is set, StarPU will calibrate the performance models when
  2053. executing tasks. If this value is equal to -1, the default value is used. The
  2054. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2055. variable when it is set.
  2056. @end table
  2057. @end table
  2058. @node starpu_conf_init
  2059. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2060. @table @asis
  2061. This function initializes the @code{starpu_conf} structure passed as argument
  2062. with the default values. In case some configuration parameters are already
  2063. specified through environment variables, @code{starpu_conf_init} initializes
  2064. the fields of the structure according to the environment variables. For
  2065. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2066. @code{.ncuda} field of the structure passed as argument.
  2067. @item @emph{Return value}:
  2068. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2069. indicates that the argument was NULL.
  2070. @item @emph{Prototype}:
  2071. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2072. @end table
  2073. @node starpu_shutdown
  2074. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2075. @table @asis
  2076. @item @emph{Description}:
  2077. This is StarPU termination method. It must be called at the end of the
  2078. application: statistics and other post-mortem debugging information are not
  2079. guaranteed to be available until this method has been called.
  2080. @item @emph{Prototype}:
  2081. @code{void starpu_shutdown(void);}
  2082. @end table
  2083. @node Workers' Properties
  2084. @section Workers' Properties
  2085. @menu
  2086. * starpu_worker_get_count:: Get the number of processing units
  2087. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2088. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2089. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2090. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2091. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2092. * starpu_worker_get_id:: Get the identifier of the current worker
  2093. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2094. * starpu_worker_get_devid:: Get the device identifier of a worker
  2095. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2096. * starpu_worker_get_name:: Get the name of a worker
  2097. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2098. @end menu
  2099. @node starpu_worker_get_count
  2100. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2101. @table @asis
  2102. @item @emph{Description}:
  2103. This function returns the number of workers (i.e. processing units executing
  2104. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2105. @item @emph{Prototype}:
  2106. @code{unsigned starpu_worker_get_count(void);}
  2107. @end table
  2108. @node starpu_worker_get_count_by_type
  2109. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2110. @table @asis
  2111. @item @emph{Description}:
  2112. Returns the number of workers of the type indicated by the argument. A positive
  2113. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2114. the type is not valid otherwise.
  2115. @item @emph{Prototype}:
  2116. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2117. @end table
  2118. @node starpu_cpu_worker_get_count
  2119. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2120. @table @asis
  2121. @item @emph{Description}:
  2122. This function returns the number of CPUs controlled by StarPU. The returned
  2123. value should be at most @code{STARPU_NMAXCPUS}.
  2124. @item @emph{Prototype}:
  2125. @code{unsigned starpu_cpu_worker_get_count(void);}
  2126. @end table
  2127. @node starpu_cuda_worker_get_count
  2128. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2129. @table @asis
  2130. @item @emph{Description}:
  2131. This function returns the number of CUDA devices controlled by StarPU. The returned
  2132. value should be at most @code{STARPU_MAXCUDADEVS}.
  2133. @item @emph{Prototype}:
  2134. @code{unsigned starpu_cuda_worker_get_count(void);}
  2135. @end table
  2136. @node starpu_opencl_worker_get_count
  2137. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2138. @table @asis
  2139. @item @emph{Description}:
  2140. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2141. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2142. @item @emph{Prototype}:
  2143. @code{unsigned starpu_opencl_worker_get_count(void);}
  2144. @end table
  2145. @node starpu_spu_worker_get_count
  2146. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2147. @table @asis
  2148. @item @emph{Description}:
  2149. This function returns the number of Cell SPUs controlled by StarPU.
  2150. @item @emph{Prototype}:
  2151. @code{unsigned starpu_opencl_worker_get_count(void);}
  2152. @end table
  2153. @node starpu_worker_get_id
  2154. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2155. @table @asis
  2156. @item @emph{Description}:
  2157. This function returns the identifier of the worker associated to the calling
  2158. thread. The returned value is either -1 if the current context is not a StarPU
  2159. worker (i.e. when called from the application outside a task or a callback), or
  2160. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2161. @item @emph{Prototype}:
  2162. @code{int starpu_worker_get_id(void);}
  2163. @end table
  2164. @node starpu_worker_get_ids_by_type
  2165. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2166. @table @asis
  2167. @item @emph{Description}:
  2168. Fill the workerids array with the identifiers of the workers that have the type
  2169. indicated in the first argument. The maxsize argument indicates the size of the
  2170. workids array. The returned value gives the number of identifiers that were put
  2171. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2172. workers with the appropriate type: in that case, the array is filled with the
  2173. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2174. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2175. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2176. @item @emph{Prototype}:
  2177. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2178. @end table
  2179. @node starpu_worker_get_devid
  2180. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2181. @table @asis
  2182. @item @emph{Description}:
  2183. This functions returns the device id of the worker associated to an identifier
  2184. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2185. CUDA worker, this device identifier is the logical device identifier exposed by
  2186. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2187. identifier of a CPU worker is the logical identifier of the core on which the
  2188. worker was bound; this identifier is either provided by the OS or by the
  2189. @code{hwloc} library in case it is available.
  2190. @item @emph{Prototype}:
  2191. @code{int starpu_worker_get_devid(int id);}
  2192. @end table
  2193. @node starpu_worker_get_type
  2194. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2195. @table @asis
  2196. @item @emph{Description}:
  2197. This function returns the type of worker associated to an identifier (as
  2198. returned by the @code{starpu_worker_get_id} function). The returned value
  2199. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2200. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2201. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2202. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2203. identifier is unspecified.
  2204. @item @emph{Prototype}:
  2205. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2206. @end table
  2207. @node starpu_worker_get_name
  2208. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2209. @table @asis
  2210. @item @emph{Description}:
  2211. StarPU associates a unique human readable string to each processing unit. This
  2212. function copies at most the @code{maxlen} first bytes of the unique string
  2213. associated to a worker identified by its identifier @code{id} into the
  2214. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2215. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2216. function on an invalid identifier results in an unspecified behaviour.
  2217. @item @emph{Prototype}:
  2218. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2219. @end table
  2220. @node starpu_worker_get_memory_node
  2221. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2222. @table @asis
  2223. @item @emph{Description}:
  2224. This function returns the identifier of the memory node associated to the
  2225. worker identified by @code{workerid}.
  2226. @item @emph{Prototype}:
  2227. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2228. @end table
  2229. @node Data Library
  2230. @section Data Library
  2231. This section describes the data management facilities provided by StarPU.
  2232. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2233. design their own data interfaces if required.
  2234. @menu
  2235. * starpu_malloc:: Allocate data and pin it
  2236. * starpu_access_mode:: Data access mode
  2237. * unsigned memory_node:: Memory node
  2238. * starpu_data_handle:: StarPU opaque data handle
  2239. * void *interface:: StarPU data interface
  2240. * starpu_data_register:: Register a piece of data to StarPU
  2241. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2242. * starpu_data_invalidate:: Invalidate all data replicates
  2243. * starpu_data_acquire:: Access registered data from the application
  2244. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2245. * starpu_data_release:: Release registered data from the application
  2246. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2247. @end menu
  2248. @node starpu_malloc
  2249. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2250. @table @asis
  2251. @item @emph{Description}:
  2252. This function allocates data of the given size. It will also try to pin it in
  2253. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2254. thus permit data transfer and computation overlapping. The allocated buffer must
  2255. be freed thanks to the @code{starpu_free} function.
  2256. @item @emph{Prototype}:
  2257. @code{int starpu_malloc(void **A, size_t dim);}
  2258. @end table
  2259. @node starpu_access_mode
  2260. @subsection @code{starpu_access_mode} -- Data access mode
  2261. This datatype describes a data access mode. The different available modes are:
  2262. @table @asis
  2263. @table @asis
  2264. @item @code{STARPU_R} read-only mode.
  2265. @item @code{STARPU_W} write-only mode.
  2266. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2267. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2268. @end table
  2269. @end table
  2270. @node unsigned memory_node
  2271. @subsection @code{unsigned memory_node} -- Memory node
  2272. @table @asis
  2273. @item @emph{Description}:
  2274. Every worker is associated to a memory node which is a logical abstraction of
  2275. the address space from which the processing unit gets its data. For instance,
  2276. the memory node associated to the different CPU workers represents main memory
  2277. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2278. Every memory node is identified by a logical index which is accessible from the
  2279. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2280. to StarPU, the specified memory node indicates where the piece of data
  2281. initially resides (we also call this memory node the home node of a piece of
  2282. data).
  2283. @end table
  2284. @node starpu_data_handle
  2285. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2286. @table @asis
  2287. @item @emph{Description}:
  2288. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2289. data. Once a piece of data has been registered to StarPU, it is associated to a
  2290. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2291. over the entire machine, so that we can maintain data consistency and locate
  2292. data replicates for instance.
  2293. @end table
  2294. @node void *interface
  2295. @subsection @code{void *interface} -- StarPU data interface
  2296. @table @asis
  2297. @item @emph{Description}:
  2298. Data management is done at a high-level in StarPU: rather than accessing a mere
  2299. list of contiguous buffers, the tasks may manipulate data that are described by
  2300. a high-level construct which we call data interface.
  2301. An example of data interface is the "vector" interface which describes a
  2302. contiguous data array on a spefic memory node. This interface is a simple
  2303. structure containing the number of elements in the array, the size of the
  2304. elements, and the address of the array in the appropriate address space (this
  2305. address may be invalid if there is no valid copy of the array in the memory
  2306. node). More informations on the data interfaces provided by StarPU are
  2307. given in @ref{Data Interfaces}.
  2308. When a piece of data managed by StarPU is used by a task, the task
  2309. implementation is given a pointer to an interface describing a valid copy of
  2310. the data that is accessible from the current processing unit.
  2311. @end table
  2312. @node starpu_data_register
  2313. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2314. @table @asis
  2315. @item @emph{Description}:
  2316. Register a piece of data into the handle located at the @code{handleptr}
  2317. address. The @code{interface} buffer contains the initial description of the
  2318. data in the home node. The @code{ops} argument is a pointer to a structure
  2319. describing the different methods used to manipulate this type of interface. See
  2320. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2321. If @code{home_node} is -1, StarPU will automatically
  2322. allocate the memory when it is used for the
  2323. first time in write-only mode. Once such data handle has been automatically
  2324. allocated, it is possible to access it using any access mode.
  2325. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2326. matrix) which can be registered by the means of helper functions (e.g.
  2327. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2328. @item @emph{Prototype}:
  2329. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2330. uint32_t home_node,
  2331. void *interface,
  2332. struct starpu_data_interface_ops_t *ops);}
  2333. @end table
  2334. @node starpu_data_unregister
  2335. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2336. @table @asis
  2337. @item @emph{Description}:
  2338. This function unregisters a data handle from StarPU. If the data was
  2339. automatically allocated by StarPU because the home node was -1, all
  2340. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2341. is put back into the home node in the buffer that was initially registered.
  2342. Using a data handle that has been unregistered from StarPU results in an
  2343. undefined behaviour.
  2344. @item @emph{Prototype}:
  2345. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2346. @end table
  2347. @node starpu_data_invalidate
  2348. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2349. @table @asis
  2350. @item @emph{Description}:
  2351. Destroy all replicates of the data handle. After data invalidation, the first
  2352. access to the handle must be performed in write-only mode. Accessing an
  2353. invalidated data in read-mode results in undefined behaviour.
  2354. @item @emph{Prototype}:
  2355. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2356. @end table
  2357. @c TODO create a specific sections about user interaction with the DSM ?
  2358. @node starpu_data_acquire
  2359. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. The application must call this function prior to accessing registered data from
  2363. main memory outside tasks. StarPU ensures that the application will get an
  2364. up-to-date copy of the data in main memory located where the data was
  2365. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2366. be consistent with the access mode specified in the @code{mode} argument.
  2367. @code{starpu_data_release} must be called once the application does not need to
  2368. access the piece of data anymore. Note that implicit data
  2369. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2370. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2371. the data, unless that they have not been disabled explictly by calling
  2372. @code{starpu_data_set_default_sequential_consistency_flag} or
  2373. @code{starpu_data_set_sequential_consistency_flag}.
  2374. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2375. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2376. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2377. @item @emph{Prototype}:
  2378. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2379. @end table
  2380. @node starpu_data_acquire_cb
  2381. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2382. @table @asis
  2383. @item @emph{Description}:
  2384. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2385. @code{starpu_data_release}. When the data specified in the first argument is
  2386. available in the appropriate access mode, the callback function is executed.
  2387. The application may access the requested data during the execution of this
  2388. callback. The callback function must call @code{starpu_data_release} once the
  2389. application does not need to access the piece of data anymore.
  2390. Note that implicit data dependencies are also enforced by
  2391. @code{starpu_data_acquire_cb} in case they are enabled.
  2392. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2393. be called from task callbacks. Upon successful completion, this function
  2394. returns 0.
  2395. @item @emph{Prototype}:
  2396. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2397. @end table
  2398. @node starpu_data_release
  2399. @subsection @code{starpu_data_release} -- Release registered data from the application
  2400. @table @asis
  2401. @item @emph{Description}:
  2402. This function releases the piece of data acquired by the application either by
  2403. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2404. @item @emph{Prototype}:
  2405. @code{void starpu_data_release(starpu_data_handle handle);}
  2406. @end table
  2407. @node starpu_data_set_wt_mask
  2408. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2409. @table @asis
  2410. @item @emph{Description}:
  2411. This function sets the write-through mask of a given data, i.e. a bitmask of
  2412. nodes where the data should be always replicated after modification.
  2413. @item @emph{Prototype}:
  2414. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2415. @end table
  2416. @node Data Interfaces
  2417. @section Data Interfaces
  2418. @menu
  2419. * Variable Interface::
  2420. * Vector Interface::
  2421. * Matrix Interface::
  2422. * 3D Matrix Interface::
  2423. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2424. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2425. @end menu
  2426. @node Variable Interface
  2427. @subsection Variable Interface
  2428. @table @asis
  2429. @item @emph{Description}:
  2430. This variant of @code{starpu_data_register} uses the variable interface,
  2431. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2432. and @code{elemsize} is the size of the variable.
  2433. @item @emph{Prototype}:
  2434. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2435. uint32_t home_node,
  2436. uintptr_t ptr, size_t elemsize);}
  2437. @item @emph{Example}:
  2438. @cartouche
  2439. @smallexample
  2440. float var;
  2441. starpu_data_handle var_handle;
  2442. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2443. @end smallexample
  2444. @end cartouche
  2445. @end table
  2446. @node Vector Interface
  2447. @subsection Vector Interface
  2448. @table @asis
  2449. @item @emph{Description}:
  2450. This variant of @code{starpu_data_register} uses the vector interface,
  2451. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2452. element in the home node. @code{nx} is the number of elements in the vector.
  2453. @code{elemsize} is the size of each element.
  2454. @item @emph{Prototype}:
  2455. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2456. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2457. @item @emph{Example}:
  2458. @cartouche
  2459. @smallexample
  2460. float vector[NX];
  2461. starpu_data_handle vector_handle;
  2462. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2463. sizeof(vector[0]));
  2464. @end smallexample
  2465. @end cartouche
  2466. @end table
  2467. @node Matrix Interface
  2468. @subsection Matrix Interface
  2469. @table @asis
  2470. @item @emph{Description}:
  2471. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2472. matrices of elements. @code{ptr} is the address of the first element in the home
  2473. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2474. of elements in a row (this can be different from @code{ld} if there are extra
  2475. elements for alignment for instance). @code{ny} is the number of rows.
  2476. @code{elemsize} is the size of each element.
  2477. @item @emph{Prototype}:
  2478. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2479. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2480. uint32_t ny, size_t elemsize);}
  2481. @item @emph{Example}:
  2482. @cartouche
  2483. @smallexample
  2484. float *matrix;
  2485. starpu_data_handle matrix_handle;
  2486. matrix = (float*)malloc(width * height * sizeof(float));
  2487. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2488. width, width, height, sizeof(float));
  2489. @end smallexample
  2490. @end cartouche
  2491. @end table
  2492. @node 3D Matrix Interface
  2493. @subsection 3D Matrix Interface
  2494. @table @asis
  2495. @item @emph{Description}:
  2496. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2497. @code{ptr} is the address of the array of first element in the home node.
  2498. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2499. of rows between z planes. @code{nx} is the number of elements in a row (this
  2500. can be different from @code{ldy} if there are extra elements for alignment
  2501. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2502. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2503. each element.
  2504. @item @emph{Prototype}:
  2505. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2506. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2507. uint32_t ny, uint32_t nz, size_t elemsize);}
  2508. @item @emph{Example}:
  2509. @cartouche
  2510. @smallexample
  2511. float *block;
  2512. starpu_data_handle block_handle;
  2513. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2514. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2515. nx, nx*ny, nx, ny, nz, sizeof(float));
  2516. @end smallexample
  2517. @end cartouche
  2518. @end table
  2519. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2520. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2521. @table @asis
  2522. @item @emph{Description}:
  2523. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2524. TODO
  2525. @item @emph{Prototype}:
  2526. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2527. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2528. @item @emph{Example}:
  2529. @cartouche
  2530. @smallexample
  2531. @end smallexample
  2532. @end cartouche
  2533. @end table
  2534. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2535. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2536. @table @asis
  2537. @item @emph{Description}:
  2538. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2539. TODO
  2540. @item @emph{Prototype}:
  2541. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2542. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2543. @item @emph{Example}:
  2544. @cartouche
  2545. @smallexample
  2546. @end smallexample
  2547. @end cartouche
  2548. @end table
  2549. @node Data Partition
  2550. @section Data Partition
  2551. @menu
  2552. * struct starpu_data_filter:: StarPU filter structure
  2553. * starpu_data_partition:: Partition Data
  2554. * starpu_data_unpartition:: Unpartition Data
  2555. * starpu_data_get_nb_children::
  2556. * starpu_data_get_sub_data::
  2557. * Predefined filter functions::
  2558. @end menu
  2559. @node struct starpu_data_filter
  2560. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2561. @table @asis
  2562. @item @emph{Description}:
  2563. The filter structure describes a data partitioning operation, to be given to the
  2564. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2565. @item @emph{Fields}:
  2566. @table @asis
  2567. @item @code{filter_func}:
  2568. This function fills the @code{child_interface} structure with interface
  2569. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2570. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2571. @item @code{nchildren}:
  2572. This is the number of parts to partition the data into.
  2573. @item @code{get_nchildren}:
  2574. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2575. children depends on the actual data (e.g. the number of blocks in a sparse
  2576. matrix).
  2577. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2578. @item @code{get_child_ops}:
  2579. In case the resulting children use a different data interface, this function
  2580. returns which interface is used by child number @code{id}.
  2581. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2582. @item @code{filter_arg}:
  2583. Some filters take an addition parameter, but this is usually unused.
  2584. @item @code{filter_arg_ptr}:
  2585. Some filters take an additional array parameter like the sizes of the parts, but
  2586. this is usually unused.
  2587. @end table
  2588. @end table
  2589. @node starpu_data_partition
  2590. @subsection starpu_data_partition -- Partition Data
  2591. @table @asis
  2592. @item @emph{Description}:
  2593. This requests partitioning one StarPU data @code{initial_handle} into several
  2594. subdata according to the filter @code{f}
  2595. @item @emph{Prototype}:
  2596. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2597. @item @emph{Example}:
  2598. @cartouche
  2599. @smallexample
  2600. struct starpu_data_filter f = @{
  2601. .filter_func = starpu_vertical_block_filter_func,
  2602. .nchildren = nslicesx,
  2603. .get_nchildren = NULL,
  2604. .get_child_ops = NULL
  2605. @};
  2606. starpu_data_partition(A_handle, &f);
  2607. @end smallexample
  2608. @end cartouche
  2609. @end table
  2610. @node starpu_data_unpartition
  2611. @subsection starpu_data_unpartition -- Unpartition data
  2612. @table @asis
  2613. @item @emph{Description}:
  2614. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2615. collected back into one big piece in the @code{gathering_node} (usually 0).
  2616. @item @emph{Prototype}:
  2617. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2618. @item @emph{Example}:
  2619. @cartouche
  2620. @smallexample
  2621. starpu_data_unpartition(A_handle, 0);
  2622. @end smallexample
  2623. @end cartouche
  2624. @end table
  2625. @node starpu_data_get_nb_children
  2626. @subsection starpu_data_get_nb_children
  2627. @table @asis
  2628. @item @emph{Description}:
  2629. This function returns the number of children.
  2630. @item @emph{Return value}:
  2631. The number of children.
  2632. @item @emph{Prototype}:
  2633. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2634. @end table
  2635. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2636. @node starpu_data_get_sub_data
  2637. @subsection starpu_data_get_sub_data
  2638. @table @asis
  2639. @item @emph{Description}:
  2640. After partitioning a StarPU data by applying a filter,
  2641. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2642. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2643. is the number of filters to traverse (in case several filters have been applied,
  2644. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2645. parameters are the indexes.
  2646. @item @emph{Return value}:
  2647. A handle to the subdata.
  2648. @item @emph{Prototype}:
  2649. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2650. @item @emph{Example}:
  2651. @cartouche
  2652. @smallexample
  2653. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2654. @end smallexample
  2655. @end cartouche
  2656. @end table
  2657. @node Predefined filter functions
  2658. @subsection Predefined filter functions
  2659. @menu
  2660. * Partitioning BCSR Data::
  2661. * Partitioning BLAS interface::
  2662. * Partitioning Vector Data::
  2663. * Partitioning Block Data::
  2664. @end menu
  2665. This section gives a partial list of the predefined partitioning functions.
  2666. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2667. list can be found in @code{starpu_data_filters.h} .
  2668. @node Partitioning BCSR Data
  2669. @subsubsection Partitioning BCSR Data
  2670. @table @asis
  2671. @item @emph{Description}:
  2672. TODO
  2673. @item @emph{Prototype}:
  2674. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2675. @end table
  2676. @table @asis
  2677. @item @emph{Description}:
  2678. TODO
  2679. @item @emph{Prototype}:
  2680. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2681. @end table
  2682. @node Partitioning BLAS interface
  2683. @subsubsection Partitioning BLAS interface
  2684. @table @asis
  2685. @item @emph{Description}:
  2686. This partitions a dense Matrix into horizontal blocks.
  2687. @item @emph{Prototype}:
  2688. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2689. @end table
  2690. @table @asis
  2691. @item @emph{Description}:
  2692. This partitions a dense Matrix into vertical blocks.
  2693. @item @emph{Prototype}:
  2694. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2695. @end table
  2696. @node Partitioning Vector Data
  2697. @subsubsection Partitioning Vector Data
  2698. @table @asis
  2699. @item @emph{Description}:
  2700. This partitions a vector into blocks of the same size.
  2701. @item @emph{Prototype}:
  2702. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2703. @end table
  2704. @table @asis
  2705. @item @emph{Description}:
  2706. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2707. @item @emph{Prototype}:
  2708. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2709. @end table
  2710. @table @asis
  2711. @item @emph{Description}:
  2712. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2713. @item @emph{Prototype}:
  2714. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2715. @end table
  2716. @node Partitioning Block Data
  2717. @subsubsection Partitioning Block Data
  2718. @table @asis
  2719. @item @emph{Description}:
  2720. This partitions a 3D matrix along the X axis.
  2721. @item @emph{Prototype}:
  2722. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2723. @end table
  2724. @node Codelets and Tasks
  2725. @section Codelets and Tasks
  2726. @menu
  2727. * struct starpu_codelet:: StarPU codelet structure
  2728. * struct starpu_task:: StarPU task structure
  2729. * starpu_task_init:: Initialize a Task
  2730. * starpu_task_create:: Allocate and Initialize a Task
  2731. * starpu_task_deinit:: Release all the resources used by a Task
  2732. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2733. * starpu_task_wait:: Wait for the termination of a Task
  2734. * starpu_task_submit:: Submit a Task
  2735. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2736. * starpu_get_current_task:: Return the task currently executed by the worker
  2737. * starpu_display_codelet_stats:: Display statistics
  2738. @end menu
  2739. @node struct starpu_codelet
  2740. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2741. @table @asis
  2742. @item @emph{Description}:
  2743. The codelet structure describes a kernel that is possibly implemented on various
  2744. targets. For compatibility, make sure to initialize the whole structure to zero.
  2745. @item @emph{Fields}:
  2746. @table @asis
  2747. @item @code{where}:
  2748. Indicates which types of processing units are able to execute the codelet.
  2749. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2750. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2751. indicates that it is only available on Cell SPUs.
  2752. @item @code{cpu_func} (optional):
  2753. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2754. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2755. argument being the array of data managed by the data management library, and
  2756. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2757. field of the @code{starpu_task} structure.
  2758. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2759. the @code{where} field, it must be non-null otherwise.
  2760. @item @code{cuda_func} (optional):
  2761. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2762. must be a host-function written in the CUDA runtime API}. Its prototype must
  2763. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2764. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2765. field, it must be non-null otherwise.
  2766. @item @code{opencl_func} (optional):
  2767. Is a function pointer to the OpenCL implementation of the codelet. Its
  2768. prototype must be:
  2769. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2770. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2771. @code{where} field, it must be non-null otherwise.
  2772. @item @code{gordon_func} (optional):
  2773. This is the index of the Cell SPU implementation within the Gordon library.
  2774. See Gordon documentation for more details on how to register a kernel and
  2775. retrieve its index.
  2776. @item @code{nbuffers}:
  2777. Specifies the number of arguments taken by the codelet. These arguments are
  2778. managed by the DSM and are accessed from the @code{void *buffers[]}
  2779. array. The constant argument passed with the @code{cl_arg} field of the
  2780. @code{starpu_task} structure is not counted in this number. This value should
  2781. not be above @code{STARPU_NMAXBUFS}.
  2782. @item @code{model} (optional):
  2783. This is a pointer to the task duration performance model associated to this
  2784. codelet. This optional field is ignored when set to @code{NULL}.
  2785. TODO
  2786. @item @code{power_model} (optional):
  2787. This is a pointer to the task power consumption performance model associated
  2788. to this codelet. This optional field is ignored when set to @code{NULL}.
  2789. In the case of parallel codelets, this has to account for all processing units
  2790. involved in the parallel execution.
  2791. TODO
  2792. @end table
  2793. @end table
  2794. @node struct starpu_task
  2795. @subsection @code{struct starpu_task} -- StarPU task structure
  2796. @table @asis
  2797. @item @emph{Description}:
  2798. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2799. processing units managed by StarPU. It instantiates a codelet. It can either be
  2800. allocated dynamically with the @code{starpu_task_create} method, or declared
  2801. statically. In the latter case, the programmer has to zero the
  2802. @code{starpu_task} structure and to fill the different fields properly. The
  2803. indicated default values correspond to the configuration of a task allocated
  2804. with @code{starpu_task_create}.
  2805. @item @emph{Fields}:
  2806. @table @asis
  2807. @item @code{cl}:
  2808. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2809. describes where the kernel should be executed, and supplies the appropriate
  2810. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2811. such empty tasks can be useful for synchronization purposes.
  2812. @item @code{buffers}:
  2813. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2814. different pieces of data accessed by the task, and how they should be accessed.
  2815. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2816. @code{handle} field specifies the handle of the piece of data, and the
  2817. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2818. of entries in this array must be specified in the @code{nbuffers} field of the
  2819. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2820. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2821. option when configuring StarPU.
  2822. @item @code{cl_arg} (optional) (default = NULL):
  2823. This pointer is passed to the codelet through the second argument
  2824. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2825. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2826. argument.
  2827. @item @code{cl_arg_size} (optional, Cell specific):
  2828. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2829. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2830. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2831. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2832. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2833. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2834. codelets, where the @code{cl_arg} pointer is given as such.
  2835. @item @code{callback_func} (optional) (default = @code{NULL}):
  2836. This is a function pointer of prototype @code{void (*f)(void *)} which
  2837. specifies a possible callback. If this pointer is non-null, the callback
  2838. function is executed @emph{on the host} after the execution of the task. The
  2839. callback is passed the value contained in the @code{callback_arg} field. No
  2840. callback is executed if the field is set to @code{NULL}.
  2841. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2842. This is the pointer passed to the callback function. This field is ignored if
  2843. the @code{callback_func} is set to @code{NULL}.
  2844. @item @code{use_tag} (optional) (default = 0):
  2845. If set, this flag indicates that the task should be associated with the tag
  2846. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2847. with the task and to express task dependencies easily.
  2848. @item @code{tag_id}:
  2849. This fields contains the tag associated to the task if the @code{use_tag} field
  2850. was set, it is ignored otherwise.
  2851. @item @code{synchronous}:
  2852. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2853. returns only when the task has been executed (or if no worker is able to
  2854. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2855. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2856. This field indicates a level of priority for the task. This is an integer value
  2857. that must be set between the return values of the
  2858. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2859. and that of the @code{starpu_sched_get_max_priority} for the most important
  2860. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2861. are provided for convenience and respectively returns value of
  2862. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2863. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2864. order to allow static task initialization. Scheduling strategies that take
  2865. priorities into account can use this parameter to take better scheduling
  2866. decisions, but the scheduling policy may also ignore it.
  2867. @item @code{execute_on_a_specific_worker} (default = 0):
  2868. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2869. task to the worker specified by the @code{workerid} field.
  2870. @item @code{workerid} (optional):
  2871. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2872. which is the identifier of the worker that should process this task (as
  2873. returned by @code{starpu_worker_get_id}). This field is ignored if
  2874. @code{execute_on_a_specific_worker} field is set to 0.
  2875. @item @code{detach} (optional) (default = 1):
  2876. If this flag is set, it is not possible to synchronize with the task
  2877. by the means of @code{starpu_task_wait} later on. Internal data structures
  2878. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2879. flag is not set.
  2880. @item @code{destroy} (optional) (default = 1):
  2881. If this flag is set, the task structure will automatically be freed, either
  2882. after the execution of the callback if the task is detached, or during
  2883. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2884. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2885. called explicitly. Setting this flag for a statically allocated task structure
  2886. will result in undefined behaviour.
  2887. @item @code{predicted} (output field):
  2888. Predicted duration of the task. This field is only set if the scheduling
  2889. strategy used performance models.
  2890. @end table
  2891. @end table
  2892. @node starpu_task_init
  2893. @subsection @code{starpu_task_init} -- Initialize a Task
  2894. @table @asis
  2895. @item @emph{Description}:
  2896. Initialize a task structure with default values. This function is implicitly
  2897. called by @code{starpu_task_create}. By default, tasks initialized with
  2898. @code{starpu_task_init} must be deinitialized explicitly with
  2899. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2900. constant @code{STARPU_TASK_INITIALIZER}.
  2901. @item @emph{Prototype}:
  2902. @code{void starpu_task_init(struct starpu_task *task);}
  2903. @end table
  2904. @node starpu_task_create
  2905. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2906. @table @asis
  2907. @item @emph{Description}:
  2908. Allocate a task structure and initialize it with default values. Tasks
  2909. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2910. task is terminated. If the destroy flag is explicitly unset, the resources used
  2911. by the task are freed by calling
  2912. @code{starpu_task_destroy}.
  2913. @item @emph{Prototype}:
  2914. @code{struct starpu_task *starpu_task_create(void);}
  2915. @end table
  2916. @node starpu_task_deinit
  2917. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2918. @table @asis
  2919. @item @emph{Description}:
  2920. Release all the structures automatically allocated to execute the task. This is
  2921. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2922. freed. This should be used for statically allocated tasks for instance.
  2923. @item @emph{Prototype}:
  2924. @code{void starpu_task_deinit(struct starpu_task *task);}
  2925. @end table
  2926. @node starpu_task_destroy
  2927. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2928. @table @asis
  2929. @item @emph{Description}:
  2930. Free the resource allocated during @code{starpu_task_create}. This function can be
  2931. called automatically after the execution of a task by setting the
  2932. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2933. Calling this function on a statically allocated task results in an undefined
  2934. behaviour.
  2935. @item @emph{Prototype}:
  2936. @code{void starpu_task_destroy(struct starpu_task *task);}
  2937. @end table
  2938. @node starpu_task_wait
  2939. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2940. @table @asis
  2941. @item @emph{Description}:
  2942. This function blocks until the task has been executed. It is not possible to
  2943. synchronize with a task more than once. It is not possible to wait for
  2944. synchronous or detached tasks.
  2945. @item @emph{Return value}:
  2946. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2947. indicates that the specified task was either synchronous or detached.
  2948. @item @emph{Prototype}:
  2949. @code{int starpu_task_wait(struct starpu_task *task);}
  2950. @end table
  2951. @node starpu_task_submit
  2952. @subsection @code{starpu_task_submit} -- Submit a Task
  2953. @table @asis
  2954. @item @emph{Description}:
  2955. This function submits a task to StarPU. Calling this function does
  2956. not mean that the task will be executed immediately as there can be data or task
  2957. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2958. scheduling this task with respect to such dependencies.
  2959. This function returns immediately if the @code{synchronous} field of the
  2960. @code{starpu_task} structure was set to 0, and block until the termination of
  2961. the task otherwise. It is also possible to synchronize the application with
  2962. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2963. function for instance.
  2964. @item @emph{Return value}:
  2965. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2966. means that there is no worker able to process this task (e.g. there is no GPU
  2967. available and this task is only implemented for CUDA devices).
  2968. @item @emph{Prototype}:
  2969. @code{int starpu_task_submit(struct starpu_task *task);}
  2970. @end table
  2971. @node starpu_task_wait_for_all
  2972. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2973. @table @asis
  2974. @item @emph{Description}:
  2975. This function blocks until all the tasks that were submitted are terminated.
  2976. @item @emph{Prototype}:
  2977. @code{void starpu_task_wait_for_all(void);}
  2978. @end table
  2979. @node starpu_get_current_task
  2980. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2981. @table @asis
  2982. @item @emph{Description}:
  2983. This function returns the task currently executed by the worker, or
  2984. NULL if it is called either from a thread that is not a task or simply
  2985. because there is no task being executed at the moment.
  2986. @item @emph{Prototype}:
  2987. @code{struct starpu_task *starpu_get_current_task(void);}
  2988. @end table
  2989. @node starpu_display_codelet_stats
  2990. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2991. @table @asis
  2992. @item @emph{Description}:
  2993. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2994. @item @emph{Prototype}:
  2995. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2996. @end table
  2997. @c Callbacks : what can we put in callbacks ?
  2998. @node Explicit Dependencies
  2999. @section Explicit Dependencies
  3000. @menu
  3001. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3002. * starpu_tag_t:: Task logical identifier
  3003. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3004. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3005. * starpu_tag_wait:: Block until a Tag is terminated
  3006. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3007. * starpu_tag_remove:: Destroy a Tag
  3008. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3009. @end menu
  3010. @node starpu_task_declare_deps_array
  3011. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3012. @table @asis
  3013. @item @emph{Description}:
  3014. Declare task dependencies between a @code{task} and an array of tasks of length
  3015. @code{ndeps}. This function must be called prior to the submission of the task,
  3016. but it may called after the submission or the execution of the tasks in the
  3017. array provided the tasks are still valid (ie. they were not automatically
  3018. destroyed). Calling this function on a task that was already submitted or with
  3019. an entry of @code{task_array} that is not a valid task anymore results in an
  3020. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  3021. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3022. same task, in this case, the dependencies are added. It is possible to have
  3023. redundancy in the task dependencies.
  3024. @item @emph{Prototype}:
  3025. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  3026. @end table
  3027. @node starpu_tag_t
  3028. @subsection @code{starpu_tag_t} -- Task logical identifier
  3029. @table @asis
  3030. @item @emph{Description}:
  3031. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3032. dependencies between tasks by the means of those tags. To do so, fill the
  3033. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3034. be arbitrary) and set the @code{use_tag} field to 1.
  3035. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3036. not be started until the tasks which holds the declared dependency tags are
  3037. completed.
  3038. @end table
  3039. @node starpu_tag_declare_deps
  3040. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3041. @table @asis
  3042. @item @emph{Description}:
  3043. Specify the dependencies of the task identified by tag @code{id}. The first
  3044. argument specifies the tag which is configured, the second argument gives the
  3045. number of tag(s) on which @code{id} depends. The following arguments are the
  3046. tags which have to be terminated to unlock the task.
  3047. This function must be called before the associated task is submitted to StarPU
  3048. with @code{starpu_task_submit}.
  3049. @item @emph{Remark}
  3050. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3051. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3052. typically need to be explicitly casted. Using the
  3053. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3054. @item @emph{Prototype}:
  3055. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3056. @item @emph{Example}:
  3057. @cartouche
  3058. @example
  3059. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3060. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3061. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3062. @end example
  3063. @end cartouche
  3064. @end table
  3065. @node starpu_tag_declare_deps_array
  3066. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3067. @table @asis
  3068. @item @emph{Description}:
  3069. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3070. does not take a variable number of arguments but an array of tags of size
  3071. @code{ndeps}.
  3072. @item @emph{Prototype}:
  3073. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3074. @item @emph{Example}:
  3075. @cartouche
  3076. @example
  3077. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3078. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3079. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3080. @end example
  3081. @end cartouche
  3082. @end table
  3083. @node starpu_tag_wait
  3084. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3085. @table @asis
  3086. @item @emph{Description}:
  3087. This function blocks until the task associated to tag @code{id} has been
  3088. executed. This is a blocking call which must therefore not be called within
  3089. tasks or callbacks, but only from the application directly. It is possible to
  3090. synchronize with the same tag multiple times, as long as the
  3091. @code{starpu_tag_remove} function is not called. Note that it is still
  3092. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3093. data structure was freed (e.g. if the @code{destroy} flag of the
  3094. @code{starpu_task} was enabled).
  3095. @item @emph{Prototype}:
  3096. @code{void starpu_tag_wait(starpu_tag_t id);}
  3097. @end table
  3098. @node starpu_tag_wait_array
  3099. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3100. @table @asis
  3101. @item @emph{Description}:
  3102. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3103. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3104. terminated.
  3105. @item @emph{Prototype}:
  3106. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3107. @end table
  3108. @node starpu_tag_remove
  3109. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3110. @table @asis
  3111. @item @emph{Description}:
  3112. This function releases the resources associated to tag @code{id}. It can be
  3113. called once the corresponding task has been executed and when there is
  3114. no other tag that depend on this tag anymore.
  3115. @item @emph{Prototype}:
  3116. @code{void starpu_tag_remove(starpu_tag_t id);}
  3117. @end table
  3118. @node starpu_tag_notify_from_apps
  3119. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3120. @table @asis
  3121. @item @emph{Description}:
  3122. This function explicitly unlocks tag @code{id}. It may be useful in the
  3123. case of applications which execute part of their computation outside StarPU
  3124. tasks (e.g. third-party libraries). It is also provided as a
  3125. convenient tool for the programmer, for instance to entirely construct the task
  3126. DAG before actually giving StarPU the opportunity to execute the tasks.
  3127. @item @emph{Prototype}:
  3128. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3129. @end table
  3130. @node Implicit Data Dependencies
  3131. @section Implicit Data Dependencies
  3132. @menu
  3133. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3134. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3135. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3136. @end menu
  3137. In this section, we describe how StarPU makes it possible to insert implicit
  3138. task dependencies in order to enforce sequential data consistency. When this
  3139. data consistency is enabled on a specific data handle, any data access will
  3140. appear as sequentially consistent from the application. For instance, if the
  3141. application submits two tasks that access the same piece of data in read-only
  3142. mode, and then a third task that access it in write mode, dependencies will be
  3143. added between the two first tasks and the third one. Implicit data dependencies
  3144. are also inserted in the case of data accesses from the application.
  3145. @node starpu_data_set_default_sequential_consistency_flag
  3146. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3147. @table @asis
  3148. @item @emph{Description}:
  3149. Set the default sequential consistency flag. If a non-zero value is passed, a
  3150. sequential data consistency will be enforced for all handles registered after
  3151. this function call, otherwise it is disabled. By default, StarPU enables
  3152. sequential data consistency. It is also possible to select the data consistency
  3153. mode of a specific data handle with the
  3154. @code{starpu_data_set_sequential_consistency_flag} function.
  3155. @item @emph{Prototype}:
  3156. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3157. @end table
  3158. @node starpu_data_get_default_sequential_consistency_flag
  3159. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3160. @table @asis
  3161. @item @emph{Description}:
  3162. This function returns the current default sequential consistency flag.
  3163. @item @emph{Prototype}:
  3164. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3165. @end table
  3166. @node starpu_data_set_sequential_consistency_flag
  3167. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3168. @table @asis
  3169. @item @emph{Description}:
  3170. Select the data consistency mode associated to a data handle. The consistency
  3171. mode set using this function has the priority over the default mode which can
  3172. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3173. @item @emph{Prototype}:
  3174. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3175. @end table
  3176. @node Performance Model API
  3177. @section Performance Model API
  3178. @menu
  3179. * starpu_load_history_debug::
  3180. * starpu_perfmodel_debugfilepath::
  3181. * starpu_perfmodel_get_arch_name::
  3182. * starpu_force_bus_sampling::
  3183. @end menu
  3184. @node starpu_load_history_debug
  3185. @subsection @code{starpu_load_history_debug}
  3186. @table @asis
  3187. @item @emph{Description}:
  3188. TODO
  3189. @item @emph{Prototype}:
  3190. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3191. @end table
  3192. @node starpu_perfmodel_debugfilepath
  3193. @subsection @code{starpu_perfmodel_debugfilepath}
  3194. @table @asis
  3195. @item @emph{Description}:
  3196. TODO
  3197. @item @emph{Prototype}:
  3198. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3199. @end table
  3200. @node starpu_perfmodel_get_arch_name
  3201. @subsection @code{starpu_perfmodel_get_arch_name}
  3202. @table @asis
  3203. @item @emph{Description}:
  3204. TODO
  3205. @item @emph{Prototype}:
  3206. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3207. @end table
  3208. @node starpu_force_bus_sampling
  3209. @subsection @code{starpu_force_bus_sampling}
  3210. @table @asis
  3211. @item @emph{Description}:
  3212. This forces sampling the bus performance model again.
  3213. @item @emph{Prototype}:
  3214. @code{void starpu_force_bus_sampling(void);}
  3215. @end table
  3216. @node Profiling API
  3217. @section Profiling API
  3218. @menu
  3219. * starpu_profiling_status_set:: starpu_profiling_status_set
  3220. * starpu_profiling_status_get:: starpu_profiling_status_get
  3221. * struct starpu_task_profiling_info:: task profiling information
  3222. * struct starpu_worker_profiling_info:: worker profiling information
  3223. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3224. * struct starpu_bus_profiling_info:: bus profiling information
  3225. * starpu_bus_get_count::
  3226. * starpu_bus_get_id::
  3227. * starpu_bus_get_src::
  3228. * starpu_bus_get_dst::
  3229. * starpu_timing_timespec_delay_us::
  3230. * starpu_timing_timespec_to_us::
  3231. * starpu_bus_profiling_helper_display_summary::
  3232. * starpu_worker_profiling_helper_display_summary::
  3233. @end menu
  3234. @node starpu_profiling_status_set
  3235. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3236. @table @asis
  3237. @item @emph{Description}:
  3238. Thie function sets the profiling status. Profiling is activated by passing
  3239. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3240. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3241. resets all profiling measurements. When profiling is enabled, the
  3242. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3243. to a valid @code{struct starpu_task_profiling_info} structure containing
  3244. information about the execution of the task.
  3245. @item @emph{Return value}:
  3246. Negative return values indicate an error, otherwise the previous status is
  3247. returned.
  3248. @item @emph{Prototype}:
  3249. @code{int starpu_profiling_status_set(int status);}
  3250. @end table
  3251. @node starpu_profiling_status_get
  3252. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3253. @table @asis
  3254. @item @emph{Description}:
  3255. Return the current profiling status or a negative value in case there was an error.
  3256. @item @emph{Prototype}:
  3257. @code{int starpu_profiling_status_get(void);}
  3258. @end table
  3259. @node struct starpu_task_profiling_info
  3260. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3261. @table @asis
  3262. @item @emph{Description}:
  3263. This structure contains information about the execution of a task. It is
  3264. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3265. structure if profiling was enabled.
  3266. @item @emph{Fields}:
  3267. @table @asis
  3268. @item @code{submit_time}:
  3269. Date of task submission (relative to the initialization of StarPU).
  3270. @item @code{start_time}:
  3271. Date of task execution beginning (relative to the initialization of StarPU).
  3272. @item @code{end_time}:
  3273. Date of task execution termination (relative to the initialization of StarPU).
  3274. @item @code{workerid}:
  3275. Identifier of the worker which has executed the task.
  3276. @end table
  3277. @end table
  3278. @node struct starpu_worker_profiling_info
  3279. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3280. @table @asis
  3281. @item @emph{Description}:
  3282. This structure contains the profiling information associated to a worker.
  3283. @item @emph{Fields}:
  3284. @table @asis
  3285. @item @code{start_time}:
  3286. Starting date for the reported profiling measurements.
  3287. @item @code{total_time}:
  3288. Duration of the profiling measurement interval.
  3289. @item @code{executing_time}:
  3290. Time spent by the worker to execute tasks during the profiling measurement interval.
  3291. @item @code{sleeping_time}:
  3292. Time spent idling by the worker during the profiling measurement interval.
  3293. @item @code{executed_tasks}:
  3294. Number of tasks executed by the worker during the profiling measurement interval.
  3295. @end table
  3296. @end table
  3297. @node starpu_worker_get_profiling_info
  3298. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3299. @table @asis
  3300. @item @emph{Description}:
  3301. Get the profiling info associated to the worker identified by @code{workerid},
  3302. and reset the profiling measurements. If the @code{worker_info} argument is
  3303. NULL, only reset the counters associated to worker @code{workerid}.
  3304. @item @emph{Return value}:
  3305. Upon successful completion, this function returns 0. Otherwise, a negative
  3306. value is returned.
  3307. @item @emph{Prototype}:
  3308. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3309. @end table
  3310. @node struct starpu_bus_profiling_info
  3311. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3312. @table @asis
  3313. @item @emph{Description}:
  3314. TODO
  3315. @item @emph{Fields}:
  3316. @table @asis
  3317. @item @code{start_time}:
  3318. TODO
  3319. @item @code{total_time}:
  3320. TODO
  3321. @item @code{transferred_bytes}:
  3322. TODO
  3323. @item @code{transfer_count}:
  3324. TODO
  3325. @end table
  3326. @end table
  3327. @node starpu_bus_get_count
  3328. @subsection @code{starpu_bus_get_count}
  3329. @table @asis
  3330. @item @emph{Description}:
  3331. TODO
  3332. @item @emph{Prototype}:
  3333. @code{int starpu_bus_get_count(void);}
  3334. @end table
  3335. @node starpu_bus_get_id
  3336. @subsection @code{starpu_bus_get_id}
  3337. @table @asis
  3338. @item @emph{Description}:
  3339. TODO
  3340. @item @emph{Prototype}:
  3341. @code{int starpu_bus_get_id(int src, int dst);}
  3342. @end table
  3343. @node starpu_bus_get_src
  3344. @subsection @code{starpu_bus_get_src}
  3345. @table @asis
  3346. @item @emph{Description}:
  3347. TODO
  3348. @item @emph{Prototype}:
  3349. @code{int starpu_bus_get_src(int busid);}
  3350. @end table
  3351. @node starpu_bus_get_dst
  3352. @subsection @code{starpu_bus_get_dst}
  3353. @table @asis
  3354. @item @emph{Description}:
  3355. TODO
  3356. @item @emph{Prototype}:
  3357. @code{int starpu_bus_get_dst(int busid);}
  3358. @end table
  3359. @node starpu_timing_timespec_delay_us
  3360. @subsection @code{starpu_timing_timespec_delay_us}
  3361. @table @asis
  3362. @item @emph{Description}:
  3363. TODO
  3364. @item @emph{Prototype}:
  3365. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3366. @end table
  3367. @node starpu_timing_timespec_to_us
  3368. @subsection @code{starpu_timing_timespec_to_us}
  3369. @table @asis
  3370. @item @emph{Description}:
  3371. TODO
  3372. @item @emph{Prototype}:
  3373. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3374. @end table
  3375. @node starpu_bus_profiling_helper_display_summary
  3376. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3377. @table @asis
  3378. @item @emph{Description}:
  3379. TODO
  3380. @item @emph{Prototype}:
  3381. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3382. @end table
  3383. @node starpu_worker_profiling_helper_display_summary
  3384. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3385. @table @asis
  3386. @item @emph{Description}:
  3387. TODO
  3388. @item @emph{Prototype}:
  3389. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3390. @end table
  3391. @node CUDA extensions
  3392. @section CUDA extensions
  3393. @c void starpu_malloc(float **A, size_t dim);
  3394. @menu
  3395. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3396. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3397. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3398. @end menu
  3399. @node starpu_cuda_get_local_stream
  3400. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3401. @table @asis
  3402. @item @emph{Description}:
  3403. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3404. function is only provided for convenience so that programmers can easily use
  3405. asynchronous operations within codelets without having to create a stream by
  3406. hand. Note that the application is not forced to use the stream provided by
  3407. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3408. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3409. the likelihood of having all transfers overlapped.
  3410. @item @emph{Prototype}:
  3411. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3412. @end table
  3413. @node starpu_helper_cublas_init
  3414. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3415. @table @asis
  3416. @item @emph{Description}:
  3417. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3418. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3419. controlled by StarPU. This call blocks until CUBLAS has been properly
  3420. initialized on every device.
  3421. @item @emph{Prototype}:
  3422. @code{void starpu_helper_cublas_init(void);}
  3423. @end table
  3424. @node starpu_helper_cublas_shutdown
  3425. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3426. @table @asis
  3427. @item @emph{Description}:
  3428. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3429. @item @emph{Prototype}:
  3430. @code{void starpu_helper_cublas_shutdown(void);}
  3431. @end table
  3432. @node OpenCL extensions
  3433. @section OpenCL extensions
  3434. @menu
  3435. * Enabling OpenCL:: Enabling OpenCL
  3436. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3437. * Loading OpenCL kernels:: Loading OpenCL kernels
  3438. * OpenCL statistics:: Collecting statistics from OpenCL
  3439. @end menu
  3440. @node Enabling OpenCL
  3441. @subsection Enabling OpenCL
  3442. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3443. enabled by default. To enable OpenCL, you need either to disable CUDA
  3444. when configuring StarPU:
  3445. @example
  3446. % ./configure --disable-cuda
  3447. @end example
  3448. or when running applications:
  3449. @example
  3450. % STARPU_NCUDA=0 ./application
  3451. @end example
  3452. OpenCL will automatically be started on any device not yet used by
  3453. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3454. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3455. so:
  3456. @example
  3457. % STARPU_NCUDA=2 ./application
  3458. @end example
  3459. @node Compiling OpenCL kernels
  3460. @subsection Compiling OpenCL kernels
  3461. Source codes for OpenCL kernels can be stored in a file or in a
  3462. string. StarPU provides functions to build the program executable for
  3463. each available OpenCL device as a @code{cl_program} object. This
  3464. program executable can then be loaded within a specific queue as
  3465. explained in the next section. These are only helpers, Applications
  3466. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3467. use (e.g. different programs on the different OpenCL devices, for
  3468. relocation purpose for instance).
  3469. @menu
  3470. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3471. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3472. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3473. @end menu
  3474. @node starpu_opencl_load_opencl_from_file
  3475. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3476. @table @asis
  3477. @item @emph{Description}:
  3478. TODO
  3479. @item @emph{Prototype}:
  3480. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3481. @end table
  3482. @node starpu_opencl_load_opencl_from_string
  3483. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3484. @table @asis
  3485. @item @emph{Description}:
  3486. TODO
  3487. @item @emph{Prototype}:
  3488. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3489. @end table
  3490. @node starpu_opencl_unload_opencl
  3491. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3492. @table @asis
  3493. @item @emph{Description}:
  3494. TODO
  3495. @item @emph{Prototype}:
  3496. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3497. @end table
  3498. @node Loading OpenCL kernels
  3499. @subsection Loading OpenCL kernels
  3500. @menu
  3501. * starpu_opencl_load_kernel:: Loading a kernel
  3502. * starpu_opencl_relase_kernel:: Releasing a kernel
  3503. @end menu
  3504. @node starpu_opencl_load_kernel
  3505. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3506. @table @asis
  3507. @item @emph{Description}:
  3508. TODO
  3509. @item @emph{Prototype}:
  3510. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3511. }
  3512. @end table
  3513. @node starpu_opencl_relase_kernel
  3514. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3515. @table @asis
  3516. @item @emph{Description}:
  3517. TODO
  3518. @item @emph{Prototype}:
  3519. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3520. @end table
  3521. @node OpenCL statistics
  3522. @subsection OpenCL statistics
  3523. @menu
  3524. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3525. @end menu
  3526. @node starpu_opencl_collect_stats
  3527. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3528. @table @asis
  3529. @item @emph{Description}:
  3530. After termination of the kernels, the OpenCL codelet should call this function
  3531. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3532. collect statistics about the kernel execution (used cycles, consumed power).
  3533. @item @emph{Prototype}:
  3534. @code{int starpu_opencl_collect_stats(cl_event event);}
  3535. @end table
  3536. @node Cell extensions
  3537. @section Cell extensions
  3538. nothing yet.
  3539. @node Miscellaneous helpers
  3540. @section Miscellaneous helpers
  3541. @menu
  3542. * starpu_data_cpy:: Copy a data handle into another data handle
  3543. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3544. @end menu
  3545. @node starpu_data_cpy
  3546. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3547. @table @asis
  3548. @item @emph{Description}:
  3549. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3550. The @code{asynchronous} parameter indicates whether the function should
  3551. block or not. In the case of an asynchronous call, it is possible to
  3552. synchronize with the termination of this operation either by the means of
  3553. implicit dependencies (if enabled) or by calling
  3554. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3555. this callback function is executed after the handle has been copied, and it is
  3556. given the @code{callback_arg} pointer as argument.
  3557. @item @emph{Prototype}:
  3558. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3559. @end table
  3560. @node starpu_execute_on_each_worker
  3561. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3562. @table @asis
  3563. @item @emph{Description}:
  3564. When calling this method, the offloaded function specified by the first argument is
  3565. executed by every StarPU worker that may execute the function.
  3566. The second argument is passed to the offloaded function.
  3567. The last argument specifies on which types of processing units the function
  3568. should be executed. Similarly to the @code{where} field of the
  3569. @code{starpu_codelet} structure, it is possible to specify that the function
  3570. should be executed on every CUDA device and every CPU by passing
  3571. @code{STARPU_CPU|STARPU_CUDA}.
  3572. This function blocks until the function has been executed on every appropriate
  3573. processing units, so that it may not be called from a callback function for
  3574. instance.
  3575. @item @emph{Prototype}:
  3576. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3577. @end table
  3578. @c ---------------------------------------------------------------------
  3579. @c Advanced Topics
  3580. @c ---------------------------------------------------------------------
  3581. @node Advanced Topics
  3582. @chapter Advanced Topics
  3583. @menu
  3584. * Defining a new data interface::
  3585. * Defining a new scheduling policy::
  3586. @end menu
  3587. @node Defining a new data interface
  3588. @section Defining a new data interface
  3589. @menu
  3590. * struct starpu_data_interface_ops_t:: Per-interface methods
  3591. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3592. * An example of data interface:: An example of data interface
  3593. @end menu
  3594. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3595. @node struct starpu_data_interface_ops_t
  3596. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3597. @table @asis
  3598. @item @emph{Description}:
  3599. TODO describe all the different fields
  3600. @end table
  3601. @node struct starpu_data_copy_methods
  3602. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3603. @table @asis
  3604. @item @emph{Description}:
  3605. TODO describe all the different fields
  3606. @end table
  3607. @node An example of data interface
  3608. @subsection An example of data interface
  3609. @table @asis
  3610. TODO
  3611. @end table
  3612. @node Defining a new scheduling policy
  3613. @section Defining a new scheduling policy
  3614. TODO
  3615. A full example showing how to define a new scheduling policy is available in
  3616. the StarPU sources in the directory @code{examples/scheduler/}.
  3617. @menu
  3618. * struct starpu_sched_policy_s::
  3619. * starpu_worker_set_sched_condition::
  3620. * starpu_sched_set_min_priority:: Set the minimum priority level
  3621. * starpu_sched_set_max_priority:: Set the maximum priority level
  3622. * starpu_push_local_task:: Assign a task to a worker
  3623. * Source code::
  3624. @end menu
  3625. @node struct starpu_sched_policy_s
  3626. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3627. @table @asis
  3628. @item @emph{Description}:
  3629. This structure contains all the methods that implement a scheduling policy. An
  3630. application may specify which scheduling strategy in the @code{sched_policy}
  3631. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3632. function.
  3633. @item @emph{Fields}:
  3634. @table @asis
  3635. @item @code{init_sched}:
  3636. Initialize the scheduling policy.
  3637. @item @code{deinit_sched}:
  3638. Cleanup the scheduling policy.
  3639. @item @code{push_task}:
  3640. Insert a task into the scheduler.
  3641. @item @code{push_prio_task}:
  3642. Insert a priority task into the scheduler.
  3643. @item @code{push_prio_notify}:
  3644. Notify the scheduler that a task was pushed on the worker. This method is
  3645. called when a task that was explicitely assigned to a worker is scheduled. This
  3646. method therefore permits to keep the state of of the scheduler coherent even
  3647. when StarPU bypasses the scheduling strategy.
  3648. @item @code{pop_task}:
  3649. Get a task from the scheduler. The mutex associated to the worker is already
  3650. taken when this method is called. If this method is defined as @code{NULL}, the
  3651. worker will only execute tasks from its local queue. In this case, the
  3652. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3653. assign tasks to the different workers.
  3654. @item @code{pop_every_task}:
  3655. Remove all available tasks from the scheduler (tasks are chained by the means
  3656. of the prev and next fields of the starpu_task structure). The mutex associated
  3657. to the worker is already taken when this method is called.
  3658. @item @code{post_exec_hook} (optionnal):
  3659. This method is called every time a task has been executed.
  3660. @item @code{policy_name}:
  3661. Name of the policy (optionnal).
  3662. @item @code{policy_description}:
  3663. Description of the policy (optionnal).
  3664. @end table
  3665. @end table
  3666. @node starpu_worker_set_sched_condition
  3667. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3668. @table @asis
  3669. @item @emph{Description}:
  3670. When there is no available task for a worker, StarPU blocks this worker on a
  3671. condition variable. This function specifies which condition variable (and the
  3672. associated mutex) should be used to block (and to wake up) a worker. Note that
  3673. multiple workers may use the same condition variable. For instance, in the case
  3674. of a scheduling strategy with a single task queue, the same condition variable
  3675. would be used to block and wake up all workers.
  3676. The initialization method of a scheduling strategy (@code{init_sched}) must
  3677. call this function once per worker.
  3678. @item @emph{Prototype}:
  3679. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3680. @end table
  3681. @node starpu_sched_set_min_priority
  3682. @subsection @code{starpu_sched_set_min_priority}
  3683. @table @asis
  3684. @item @emph{Description}:
  3685. Defines the minimum priority level supported by the scheduling policy. The
  3686. default minimum priority level is the same as the default priority level which
  3687. is 0 by convention. The application may access that value by calling the
  3688. @code{starpu_sched_get_min_priority} function. This function should only be
  3689. called from the initialization method of the scheduling policy, and should not
  3690. be used directly from the application.
  3691. @item @emph{Prototype}:
  3692. @code{void starpu_sched_set_min_priority(int min_prio);}
  3693. @end table
  3694. @node starpu_sched_set_max_priority
  3695. @subsection @code{starpu_sched_set_max_priority}
  3696. @table @asis
  3697. @item @emph{Description}:
  3698. Defines the maximum priority level supported by the scheduling policy. The
  3699. default maximum priority level is 1. The application may access that value by
  3700. calling the @code{starpu_sched_get_max_priority} function. This function should
  3701. only be called from the initialization method of the scheduling policy, and
  3702. should not be used directly from the application.
  3703. @item @emph{Prototype}:
  3704. @code{void starpu_sched_set_min_priority(int max_prio);}
  3705. @end table
  3706. @node starpu_push_local_task
  3707. @subsection @code{starpu_push_local_task}
  3708. @table @asis
  3709. @item @emph{Description}:
  3710. The scheduling policy may put tasks directly into a worker's local queue so
  3711. that it is not always necessary to create its own queue when the local queue
  3712. is sufficient. If "back" not null, the task is put at the back of the queue
  3713. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3714. a FIFO ordering.
  3715. @item @emph{Prototype}:
  3716. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3717. @end table
  3718. @node Source code
  3719. @subsection Source code
  3720. @cartouche
  3721. @smallexample
  3722. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3723. .init_sched = init_dummy_sched,
  3724. .deinit_sched = deinit_dummy_sched,
  3725. .push_task = push_task_dummy,
  3726. .push_prio_task = NULL,
  3727. .pop_task = pop_task_dummy,
  3728. .post_exec_hook = NULL,
  3729. .pop_every_task = NULL,
  3730. .policy_name = "dummy",
  3731. .policy_description = "dummy scheduling strategy"
  3732. @};
  3733. @end smallexample
  3734. @end cartouche
  3735. @c ---------------------------------------------------------------------
  3736. @c Appendices
  3737. @c ---------------------------------------------------------------------
  3738. @c ---------------------------------------------------------------------
  3739. @c Full source code for the 'Scaling a Vector' example
  3740. @c ---------------------------------------------------------------------
  3741. @node Full source code for the 'Scaling a Vector' example
  3742. @appendix Full source code for the 'Scaling a Vector' example
  3743. @menu
  3744. * Main application::
  3745. * CPU Kernel::
  3746. * CUDA Kernel::
  3747. * OpenCL Kernel::
  3748. @end menu
  3749. @node Main application
  3750. @section Main application
  3751. @smallexample
  3752. @include vector_scal_c.texi
  3753. @end smallexample
  3754. @node CPU Kernel
  3755. @section CPU Kernel
  3756. @smallexample
  3757. @include vector_scal_cpu.texi
  3758. @end smallexample
  3759. @node CUDA Kernel
  3760. @section CUDA Kernel
  3761. @smallexample
  3762. @include vector_scal_cuda.texi
  3763. @end smallexample
  3764. @node OpenCL Kernel
  3765. @section OpenCL Kernel
  3766. @menu
  3767. * Invoking the kernel::
  3768. * Source of the kernel::
  3769. @end menu
  3770. @node Invoking the kernel
  3771. @subsection Invoking the kernel
  3772. @smallexample
  3773. @include vector_scal_opencl.texi
  3774. @end smallexample
  3775. @node Source of the kernel
  3776. @subsection Source of the kernel
  3777. @smallexample
  3778. @include vector_scal_opencl_codelet.texi
  3779. @end smallexample
  3780. @c
  3781. @c Indices.
  3782. @c
  3783. @node Function Index
  3784. @unnumbered Function Index
  3785. @printindex fn
  3786. @bye