cl_enqueuewritebuffer.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2011,2012 Inria
  4. * Copyright (C) 2011,2012,2016,2017 CNRS
  5. * Copyright (C) 2010-2014,2018 Université de Bordeaux
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "socl.h"
  19. static void soclEnqueueWriteBuffer_cpu_task(void *descr[], void *args)
  20. {
  21. command_write_buffer cmd = (command_write_buffer)args;
  22. cl_event ev = command_event_get(cmd);
  23. ev->prof_start = _socl_nanotime();
  24. gc_entity_release(ev);
  25. char * ptr = (void*)STARPU_VARIABLE_GET_PTR(descr[0]);
  26. DEBUG_MSG("[Buffer %d] Writing %ld bytes from %p to %p\n", cmd->buffer->id, (long)cmd->cb, cmd->ptr, ptr+cmd->offset);
  27. //FIXME: Fix for people who use USE_HOST_PTR, modify data at host_ptr and use WriteBuffer to commit the change.
  28. // StarPU may have erased host mem at host_ptr (for instance by retrieving current buffer data at host_ptr)
  29. // Buffer mapping facilities should be used instead
  30. // Maybe we should report the bug here... for now, we just avoid memcpy crash due to overlapping regions...
  31. if (ptr+cmd->offset != cmd->ptr)
  32. memcpy(ptr+cmd->offset, cmd->ptr, cmd->cb);
  33. gc_entity_release_cmd(cmd);
  34. }
  35. static void soclEnqueueWriteBuffer_opencl_task(void *descr[], void *args)
  36. {
  37. command_write_buffer cmd = (command_write_buffer)args;
  38. cl_event event = command_event_get(cmd);
  39. event->prof_start = _socl_nanotime();
  40. gc_entity_release(event);
  41. cl_mem mem = (cl_mem)STARPU_VARIABLE_GET_PTR(descr[0]);
  42. DEBUG_MSG("[Buffer %d] Writing %ld bytes to offset %ld from %p\n", cmd->buffer->id, (long)cmd->cb, (long)cmd->offset, cmd->ptr);
  43. int wid = starpu_worker_get_id_check();
  44. cl_command_queue cq;
  45. starpu_opencl_get_queue(wid, &cq);
  46. cl_event ev;
  47. cl_int err = clEnqueueWriteBuffer(cq, mem, CL_TRUE, cmd->offset, cmd->cb, cmd->ptr, 0, NULL, &ev);
  48. if (err != CL_SUCCESS)
  49. ERROR_CL("clEnqueueWriteBuffer", err);
  50. clWaitForEvents(1, &ev);
  51. clReleaseEvent(ev);
  52. gc_entity_release_cmd(cmd);
  53. }
  54. static struct starpu_perfmodel write_buffer_perfmodel =
  55. {
  56. .type = STARPU_HISTORY_BASED,
  57. .symbol = "SOCL_WRITE_BUFFER"
  58. };
  59. static struct starpu_codelet codelet_writebuffer =
  60. {
  61. .where = STARPU_OPENCL,
  62. .model = &write_buffer_perfmodel,
  63. .cpu_funcs = { &soclEnqueueWriteBuffer_cpu_task },
  64. .opencl_funcs = { &soclEnqueueWriteBuffer_opencl_task },
  65. .modes = {STARPU_W},
  66. .nbuffers = 1
  67. };
  68. static struct starpu_codelet codelet_writebuffer_partial =
  69. {
  70. .where = STARPU_OPENCL,
  71. .model = &write_buffer_perfmodel,
  72. .cpu_funcs = { &soclEnqueueWriteBuffer_cpu_task },
  73. .opencl_funcs = { &soclEnqueueWriteBuffer_opencl_task },
  74. .modes = {STARPU_RW},
  75. .nbuffers = 1
  76. };
  77. cl_int command_write_buffer_submit(command_write_buffer cmd)
  78. {
  79. /* Aliases */
  80. cl_mem buffer = cmd->buffer;
  81. size_t cb = cmd->cb;
  82. struct starpu_task *task;
  83. task = task_create(CL_COMMAND_WRITE_BUFFER);
  84. task->handles[0] = buffer->handle;
  85. //If only a subpart of the buffer is written, RW access mode is required
  86. if (cb != buffer->size)
  87. task->cl = &codelet_writebuffer_partial;
  88. else
  89. task->cl = &codelet_writebuffer;
  90. gc_entity_store_cmd(&task->cl_arg, cmd);
  91. task->cl_arg_size = sizeof(*cmd);
  92. /* Execute the task on a specific worker? */
  93. if (cmd->_command.event->cq->device != NULL)
  94. {
  95. task->execute_on_a_specific_worker = 1;
  96. task->workerid = cmd->_command.event->cq->device->worker_id;
  97. }
  98. //The buffer now contains meaningful data
  99. cmd->buffer->scratch = 0;
  100. task_submit(task, cmd);
  101. return CL_SUCCESS;
  102. }
  103. CL_API_SUFFIX__VERSION_1_0
  104. CL_API_ENTRY cl_int CL_API_CALL
  105. soclEnqueueWriteBuffer(cl_command_queue cq,
  106. cl_mem buffer,
  107. cl_bool blocking,
  108. size_t offset,
  109. size_t cb,
  110. const void * ptr,
  111. cl_uint num_events,
  112. const cl_event * events,
  113. cl_event * event)
  114. {
  115. command_write_buffer cmd = command_write_buffer_create(buffer, offset, cb, ptr);
  116. cl_event ev = command_event_get(cmd);
  117. command_queue_enqueue(cq, cmd, num_events, events);
  118. MAY_BLOCK_THEN_RETURN_EVENT(ev, blocking, event);
  119. return CL_SUCCESS;
  120. }