| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 | 
							- /* dsprfs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b12 = -1.;
 
- static doublereal c_b14 = 1.;
 
- /* Subroutine */ int _starpu_dsprfs_(char *uplo, integer *n, integer *nrhs, 
 
- 	doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b, 
 
- 	integer *ldb, doublereal *x, integer *ldx, doublereal *ferr, 
 
- 	doublereal *berr, doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Local variables */
 
-     integer i__, j, k;
 
-     doublereal s;
 
-     integer ik, kk;
 
-     doublereal xk;
 
-     integer nz;
 
-     doublereal eps;
 
-     integer kase;
 
-     doublereal safe1, safe2;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer isave[3];
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_daxpy_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     integer count;
 
-     extern /* Subroutine */ int _starpu_dspmv_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal lstres;
 
-     extern /* Subroutine */ int _starpu_dsptrs_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPRFS improves the computed solution to a system of linear */
 
- /*  equations when the coefficient matrix is symmetric indefinite */
 
- /*  and packed, and provides error bounds and backward error estimates */
 
- /*  for the solution. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The upper or lower triangle of the symmetric matrix A, packed */
 
- /*          columnwise in a linear array.  The j-th column of A is stored */
 
- /*          in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*  AFP     (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The factored form of the matrix A.  AFP contains the block */
 
- /*          diagonal matrix D and the multipliers used to obtain the */
 
- /*          factor U or L from the factorization A = U*D*U**T or */
 
- /*          A = L*D*L**T as computed by DSPTRF, stored as a packed */
 
- /*          triangular matrix. */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          Details of the interchanges and the block structure of D */
 
- /*          as determined by DSPTRF. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          On entry, the solution matrix X, as computed by DSPTRS. */
 
- /*          On exit, the improved solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  ITMAX is the maximum number of steps of iterative refinement. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --afp;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     if (! upper && ! _starpu_lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -10;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSPRFS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *nrhs == 0) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    ferr[j] = 0.;
 
- 	    berr[j] = 0.;
 
- /* L10: */
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
 
-     nz = *n + 1;
 
-     eps = _starpu_dlamch_("Epsilon");
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     safe1 = nz * safmin;
 
-     safe2 = safe1 / eps;
 
- /*     Do for each right hand side */
 
-     i__1 = *nrhs;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	count = 1;
 
- 	lstres = 3.;
 
- L20:
 
- /*        Loop until stopping criterion is satisfied. */
 
- /*        Compute residual R = B - A * X */
 
- 	_starpu_dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
 
- 	_starpu_dspmv_(uplo, n, &c_b12, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b14, &
 
- 		work[*n + 1], &c__1);
 
- /*        Compute componentwise relative backward error from formula */
 
- /*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
 
- /*        where abs(Z) is the componentwise absolute value of the matrix */
 
- /*        or vector Z.  If the i-th component of the denominator is less */
 
- /*        than SAFE2, then SAFE1 is added to the i-th components of the */
 
- /*        numerator and denominator before dividing. */
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
 
- /* L30: */
 
- 	}
 
- /*        Compute abs(A)*abs(X) + abs(B). */
 
- 	kk = 1;
 
- 	if (upper) {
 
- 	    i__2 = *n;
 
- 	    for (k = 1; k <= i__2; ++k) {
 
- 		s = 0.;
 
- 		xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 		ik = kk;
 
- 		i__3 = k - 1;
 
- 		for (i__ = 1; i__ <= i__3; ++i__) {
 
- 		    work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
 
- 		    s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j * 
 
- 			    x_dim1], abs(d__2));
 
- 		    ++ik;
 
- /* L40: */
 
- 		}
 
- 		work[k] = work[k] + (d__1 = ap[kk + k - 1], abs(d__1)) * xk + 
 
- 			s;
 
- 		kk += k;
 
- /* L50: */
 
- 	    }
 
- 	} else {
 
- 	    i__2 = *n;
 
- 	    for (k = 1; k <= i__2; ++k) {
 
- 		s = 0.;
 
- 		xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 		work[k] += (d__1 = ap[kk], abs(d__1)) * xk;
 
- 		ik = kk + 1;
 
- 		i__3 = *n;
 
- 		for (i__ = k + 1; i__ <= i__3; ++i__) {
 
- 		    work[i__] += (d__1 = ap[ik], abs(d__1)) * xk;
 
- 		    s += (d__1 = ap[ik], abs(d__1)) * (d__2 = x[i__ + j * 
 
- 			    x_dim1], abs(d__2));
 
- 		    ++ik;
 
- /* L60: */
 
- 		}
 
- 		work[k] += s;
 
- 		kk += *n - k + 1;
 
- /* L70: */
 
- 	    }
 
- 	}
 
- 	s = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
 
- 			i__];
 
- 		s = max(d__2,d__3);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
 
- 			/ (work[i__] + safe1);
 
- 		s = max(d__2,d__3);
 
- 	    }
 
- /* L80: */
 
- 	}
 
- 	berr[j] = s;
 
- /*        Test stopping criterion. Continue iterating if */
 
- /*           1) The residual BERR(J) is larger than machine epsilon, and */
 
- /*           2) BERR(J) decreased by at least a factor of 2 during the */
 
- /*              last iteration, and */
 
- /*           3) At most ITMAX iterations tried. */
 
- 	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
 
- /*           Update solution and try again. */
 
- 	    _starpu_dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, info);
 
- 	    _starpu_daxpy_(n, &c_b14, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
 
- 		    ;
 
- 	    lstres = berr[j];
 
- 	    ++count;
 
- 	    goto L20;
 
- 	}
 
- /*        Bound error from formula */
 
- /*        norm(X - XTRUE) / norm(X) .le. FERR = */
 
- /*        norm( abs(inv(A))* */
 
- /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
 
- /*        where */
 
- /*          norm(Z) is the magnitude of the largest component of Z */
 
- /*          inv(A) is the inverse of A */
 
- /*          abs(Z) is the componentwise absolute value of the matrix or */
 
- /*             vector Z */
 
- /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
 
- /*          EPS is machine epsilon */
 
- /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
 
- /*        is incremented by SAFE1 if the i-th component of */
 
- /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
 
- /*        Use DLACN2 to estimate the infinity-norm of the matrix */
 
- /*           inv(A) * diag(W), */
 
- /*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__];
 
- 	    } else {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__] + safe1;
 
- 	    }
 
- /* L90: */
 
- 	}
 
- 	kase = 0;
 
- L100:
 
- 	_starpu_dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
 
- 		kase, isave);
 
- 	if (kase != 0) {
 
- 	    if (kase == 1) {
 
- /*              Multiply by diag(W)*inv(A'). */
 
- 		_starpu_dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, 
 
- 			info);
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    work[*n + i__] = work[i__] * work[*n + i__];
 
- /* L110: */
 
- 		}
 
- 	    } else if (kase == 2) {
 
- /*              Multiply by inv(A)*diag(W). */
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    work[*n + i__] = work[i__] * work[*n + i__];
 
- /* L120: */
 
- 		}
 
- 		_starpu_dsptrs_(uplo, n, &c__1, &afp[1], &ipiv[1], &work[*n + 1], n, 
 
- 			info);
 
- 	    }
 
- 	    goto L100;
 
- 	}
 
- /*        Normalize error. */
 
- 	lstres = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
 
- 	    lstres = max(d__2,d__3);
 
- /* L130: */
 
- 	}
 
- 	if (lstres != 0.) {
 
- 	    ferr[j] /= lstres;
 
- 	}
 
- /* L140: */
 
-     }
 
-     return 0;
 
- /*     End of DSPRFS */
 
- } /* _starpu_dsprfs_ */
 
 
  |