| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 | 
							- /* dlals0.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b5 = -1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b11 = 1.;
 
- static doublereal c_b13 = 0.;
 
- static integer c__0 = 0;
 
- /* Subroutine */ int _starpu_dlals0_(integer *icompq, integer *nl, integer *nr, 
 
- 	integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal 
 
- 	*bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol, 
 
- 	integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
 
- 	poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
 
- 	k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset, 
 
- 	    difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, 
 
- 	    poles_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, m, n;
 
-     doublereal dj;
 
-     integer nlp1;
 
-     doublereal temp;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal diflj, difrj, dsigj;
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dlacpy_(char *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *);
 
-     doublereal dsigjp;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLALS0 applies back the multiplying factors of either the left or the */
 
- /*  right singular vector matrix of a diagonal matrix appended by a row */
 
- /*  to the right hand side matrix B in solving the least squares problem */
 
- /*  using the divide-and-conquer SVD approach. */
 
- /*  For the left singular vector matrix, three types of orthogonal */
 
- /*  matrices are involved: */
 
- /*  (1L) Givens rotations: the number of such rotations is GIVPTR; the */
 
- /*       pairs of columns/rows they were applied to are stored in GIVCOL; */
 
- /*       and the C- and S-values of these rotations are stored in GIVNUM. */
 
- /*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
 
- /*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
 
- /*       J-th row. */
 
- /*  (3L) The left singular vector matrix of the remaining matrix. */
 
- /*  For the right singular vector matrix, four types of orthogonal */
 
- /*  matrices are involved: */
 
- /*  (1R) The right singular vector matrix of the remaining matrix. */
 
- /*  (2R) If SQRE = 1, one extra Givens rotation to generate the right */
 
- /*       null space. */
 
- /*  (3R) The inverse transformation of (2L). */
 
- /*  (4R) The inverse transformation of (1L). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ICOMPQ (input) INTEGER */
 
- /*         Specifies whether singular vectors are to be computed in */
 
- /*         factored form: */
 
- /*         = 0: Left singular vector matrix. */
 
- /*         = 1: Right singular vector matrix. */
 
- /*  NL     (input) INTEGER */
 
- /*         The row dimension of the upper block. NL >= 1. */
 
- /*  NR     (input) INTEGER */
 
- /*         The row dimension of the lower block. NR >= 1. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         = 0: the lower block is an NR-by-NR square matrix. */
 
- /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 
- /*         The bidiagonal matrix has row dimension N = NL + NR + 1, */
 
- /*         and column dimension M = N + SQRE. */
 
- /*  NRHS   (input) INTEGER */
 
- /*         The number of columns of B and BX. NRHS must be at least 1. */
 
- /*  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
 
- /*         On input, B contains the right hand sides of the least */
 
- /*         squares problem in rows 1 through M. On output, B contains */
 
- /*         the solution X in rows 1 through N. */
 
- /*  LDB    (input) INTEGER */
 
- /*         The leading dimension of B. LDB must be at least */
 
- /*         max(1,MAX( M, N ) ). */
 
- /*  BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
 
- /*  LDBX   (input) INTEGER */
 
- /*         The leading dimension of BX. */
 
- /*  PERM   (input) INTEGER array, dimension ( N ) */
 
- /*         The permutations (from deflation and sorting) applied */
 
- /*         to the two blocks. */
 
- /*  GIVPTR (input) INTEGER */
 
- /*         The number of Givens rotations which took place in this */
 
- /*         subproblem. */
 
- /*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) */
 
- /*         Each pair of numbers indicates a pair of rows/columns */
 
- /*         involved in a Givens rotation. */
 
- /*  LDGCOL (input) INTEGER */
 
- /*         The leading dimension of GIVCOL, must be at least N. */
 
- /*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
 
- /*         Each number indicates the C or S value used in the */
 
- /*         corresponding Givens rotation. */
 
- /*  LDGNUM (input) INTEGER */
 
- /*         The leading dimension of arrays DIFR, POLES and */
 
- /*         GIVNUM, must be at least K. */
 
- /*  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
 
- /*         On entry, POLES(1:K, 1) contains the new singular */
 
- /*         values obtained from solving the secular equation, and */
 
- /*         POLES(1:K, 2) is an array containing the poles in the secular */
 
- /*         equation. */
 
- /*  DIFL   (input) DOUBLE PRECISION array, dimension ( K ). */
 
- /*         On entry, DIFL(I) is the distance between I-th updated */
 
- /*         (undeflated) singular value and the I-th (undeflated) old */
 
- /*         singular value. */
 
- /*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
 
- /*         On entry, DIFR(I, 1) contains the distances between I-th */
 
- /*         updated (undeflated) singular value and the I+1-th */
 
- /*         (undeflated) old singular value. And DIFR(I, 2) is the */
 
- /*         normalizing factor for the I-th right singular vector. */
 
- /*  Z      (input) DOUBLE PRECISION array, dimension ( K ) */
 
- /*         Contain the components of the deflation-adjusted updating row */
 
- /*         vector. */
 
- /*  K      (input) INTEGER */
 
- /*         Contains the dimension of the non-deflated matrix, */
 
- /*         This is the order of the related secular equation. 1 <= K <=N. */
 
- /*  C      (input) DOUBLE PRECISION */
 
- /*         C contains garbage if SQRE =0 and the C-value of a Givens */
 
- /*         rotation related to the right null space if SQRE = 1. */
 
- /*  S      (input) DOUBLE PRECISION */
 
- /*         S contains garbage if SQRE =0 and the S-value of a Givens */
 
- /*         rotation related to the right null space if SQRE = 1. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension ( K ) */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 
- /*       California at Berkeley, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     bx_dim1 = *ldbx;
 
-     bx_offset = 1 + bx_dim1;
 
-     bx -= bx_offset;
 
-     --perm;
 
-     givcol_dim1 = *ldgcol;
 
-     givcol_offset = 1 + givcol_dim1;
 
-     givcol -= givcol_offset;
 
-     difr_dim1 = *ldgnum;
 
-     difr_offset = 1 + difr_dim1;
 
-     difr -= difr_offset;
 
-     poles_dim1 = *ldgnum;
 
-     poles_offset = 1 + poles_dim1;
 
-     poles -= poles_offset;
 
-     givnum_dim1 = *ldgnum;
 
-     givnum_offset = 1 + givnum_dim1;
 
-     givnum -= givnum_offset;
 
-     --difl;
 
-     --z__;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*icompq < 0 || *icompq > 1) {
 
- 	*info = -1;
 
-     } else if (*nl < 1) {
 
- 	*info = -2;
 
-     } else if (*nr < 1) {
 
- 	*info = -3;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -4;
 
-     }
 
-     n = *nl + *nr + 1;
 
-     if (*nrhs < 1) {
 
- 	*info = -5;
 
-     } else if (*ldb < n) {
 
- 	*info = -7;
 
-     } else if (*ldbx < n) {
 
- 	*info = -9;
 
-     } else if (*givptr < 0) {
 
- 	*info = -11;
 
-     } else if (*ldgcol < n) {
 
- 	*info = -13;
 
-     } else if (*ldgnum < n) {
 
- 	*info = -15;
 
-     } else if (*k < 1) {
 
- 	*info = -20;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLALS0", &i__1);
 
- 	return 0;
 
-     }
 
-     m = n + *sqre;
 
-     nlp1 = *nl + 1;
 
-     if (*icompq == 0) {
 
- /*        Apply back orthogonal transformations from the left. */
 
- /*        Step (1L): apply back the Givens rotations performed. */
 
- 	i__1 = *givptr;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
 
- 		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 
 
- 		    (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
 
- /* L10: */
 
- 	}
 
- /*        Step (2L): permute rows of B. */
 
- 	_starpu_dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
 
- 	i__1 = n;
 
- 	for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	    _starpu_dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1], 
 
- 		    ldbx);
 
- /* L20: */
 
- 	}
 
- /*        Step (3L): apply the inverse of the left singular vector */
 
- /*        matrix to BX. */
 
- 	if (*k == 1) {
 
- 	    _starpu_dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
 
- 	    if (z__[1] < 0.) {
 
- 		_starpu_dscal_(nrhs, &c_b5, &b[b_offset], ldb);
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *k;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		diflj = difl[j];
 
- 		dj = poles[j + poles_dim1];
 
- 		dsigj = -poles[j + (poles_dim1 << 1)];
 
- 		if (j < *k) {
 
- 		    difrj = -difr[j + difr_dim1];
 
- 		    dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
 
- 		}
 
- 		if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
 
- 		    work[j] = 0.;
 
- 		} else {
 
- 		    work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj /
 
- 			     (poles[j + (poles_dim1 << 1)] + dj);
 
- 		}
 
- 		i__2 = j - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 
 
- 			    0.) {
 
- 			work[i__] = 0.;
 
- 		    } else {
 
- 			work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] 
 
- 				/ (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
 
- 				dsigj) - diflj) / (poles[i__ + (poles_dim1 << 
 
- 				1)] + dj);
 
- 		    }
 
- /* L30: */
 
- 		}
 
- 		i__2 = *k;
 
- 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 
 
- 			    0.) {
 
- 			work[i__] = 0.;
 
- 		    } else {
 
- 			work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] 
 
- 				/ (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
 
- 				dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
 
- 				 1)] + dj);
 
- 		    }
 
- /* L40: */
 
- 		}
 
- 		work[1] = -1.;
 
- 		temp = _starpu_dnrm2_(k, &work[1], &c__1);
 
- 		_starpu_dgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], &
 
- 			c__1, &c_b13, &b[j + b_dim1], ldb);
 
- 		_starpu_dlascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j + 
 
- 			b_dim1], ldb, info);
 
- /* L50: */
 
- 	    }
 
- 	}
 
- /*        Move the deflated rows of BX to B also. */
 
- 	if (*k < max(m,n)) {
 
- 	    i__1 = n - *k;
 
- 	    _starpu_dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1 
 
- 		    + b_dim1], ldb);
 
- 	}
 
-     } else {
 
- /*        Apply back the right orthogonal transformations. */
 
- /*        Step (1R): apply back the new right singular vector matrix */
 
- /*        to B. */
 
- 	if (*k == 1) {
 
- 	    _starpu_dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
 
- 	} else {
 
- 	    i__1 = *k;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		dsigj = poles[j + (poles_dim1 << 1)];
 
- 		if (z__[j] == 0.) {
 
- 		    work[j] = 0.;
 
- 		} else {
 
- 		    work[j] = -z__[j] / difl[j] / (dsigj + poles[j + 
 
- 			    poles_dim1]) / difr[j + (difr_dim1 << 1)];
 
- 		}
 
- 		i__2 = j - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    if (z__[j] == 0.) {
 
- 			work[i__] = 0.;
 
- 		    } else {
 
- 			d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
 
- 			work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difr[
 
- 				i__ + difr_dim1]) / (dsigj + poles[i__ + 
 
- 				poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
 
- 		    }
 
- /* L60: */
 
- 		}
 
- 		i__2 = *k;
 
- 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 		    if (z__[j] == 0.) {
 
- 			work[i__] = 0.;
 
- 		    } else {
 
- 			d__1 = -poles[i__ + (poles_dim1 << 1)];
 
- 			work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difl[
 
- 				i__]) / (dsigj + poles[i__ + poles_dim1]) / 
 
- 				difr[i__ + (difr_dim1 << 1)];
 
- 		    }
 
- /* L70: */
 
- 		}
 
- 		_starpu_dgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], &
 
- 			c__1, &c_b13, &bx[j + bx_dim1], ldbx);
 
- /* L80: */
 
- 	    }
 
- 	}
 
- /*        Step (2R): if SQRE = 1, apply back the rotation that is */
 
- /*        related to the right null space of the subproblem. */
 
- 	if (*sqre == 1) {
 
- 	    _starpu_dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
 
- 	    _starpu_drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__, 
 
- 		    s);
 
- 	}
 
- 	if (*k < max(m,n)) {
 
- 	    i__1 = n - *k;
 
- 	    _starpu_dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 + 
 
- 		    bx_dim1], ldbx);
 
- 	}
 
- /*        Step (3R): permute rows of B. */
 
- 	_starpu_dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
 
- 	if (*sqre == 1) {
 
- 	    _starpu_dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
 
- 	}
 
- 	i__1 = n;
 
- 	for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	    _starpu_dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1], 
 
- 		    ldb);
 
- /* L90: */
 
- 	}
 
- /*        Step (4R): apply back the Givens rotations performed. */
 
- 	for (i__ = *givptr; i__ >= 1; --i__) {
 
- 	    d__1 = -givnum[i__ + givnum_dim1];
 
- 	    _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
 
- 		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 
 
- 		    (givnum_dim1 << 1)], &d__1);
 
- /* L100: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLALS0 */
 
- } /* _starpu_dlals0_ */
 
 
  |