| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 | 
							- /* dlaein.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlaein_(logical *rightv, logical *noinit, integer *n, 
 
- 	doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, 
 
- 	doublereal *vr, doublereal *vi, doublereal *b, integer *ldb, 
 
- 	doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *
 
- 	bignum, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1, d__2, d__3, d__4;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal w, x, y;
 
-     integer i1, i2, i3;
 
-     doublereal w1, ei, ej, xi, xr, rec;
 
-     integer its, ierr;
 
-     doublereal temp, norm, vmax;
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal scale;
 
-     extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);
 
-     char trans[1];
 
-     doublereal vcrit, rootn, vnorm;
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
 
-     doublereal absbii, absbjj;
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dladiv_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dlatrs_(
 
- 	    char *, char *, char *, char *, integer *, doublereal *, integer *
 
- , doublereal *, doublereal *, doublereal *, integer *);
 
-     char normin[1];
 
-     doublereal nrmsml, growto;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAEIN uses inverse iteration to find a right or left eigenvector */
 
- /*  corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
 
- /*  matrix H. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  RIGHTV   (input) LOGICAL */
 
- /*          = .TRUE. : compute right eigenvector; */
 
- /*          = .FALSE.: compute left eigenvector. */
 
- /*  NOINIT   (input) LOGICAL */
 
- /*          = .TRUE. : no initial vector supplied in (VR,VI). */
 
- /*          = .FALSE.: initial vector supplied in (VR,VI). */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix H.  N >= 0. */
 
- /*  H       (input) DOUBLE PRECISION array, dimension (LDH,N) */
 
- /*          The upper Hessenberg matrix H. */
 
- /*  LDH     (input) INTEGER */
 
- /*          The leading dimension of the array H.  LDH >= max(1,N). */
 
- /*  WR      (input) DOUBLE PRECISION */
 
- /*  WI      (input) DOUBLE PRECISION */
 
- /*          The real and imaginary parts of the eigenvalue of H whose */
 
- /*          corresponding right or left eigenvector is to be computed. */
 
- /*  VR      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*  VI      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
 
- /*          a real starting vector for inverse iteration using the real */
 
- /*          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
 
- /*          must contain the real and imaginary parts of a complex */
 
- /*          starting vector for inverse iteration using the complex */
 
- /*          eigenvalue (WR,WI); otherwise VR and VI need not be set. */
 
- /*          On exit, if WI = 0.0 (real eigenvalue), VR contains the */
 
- /*          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
 
- /*          VR and VI contain the real and imaginary parts of the */
 
- /*          computed complex eigenvector. The eigenvector is normalized */
 
- /*          so that the component of largest magnitude has magnitude 1; */
 
- /*          here the magnitude of a complex number (x,y) is taken to be */
 
- /*          |x| + |y|. */
 
- /*          VI is not referenced if WI = 0.0. */
 
- /*  B       (workspace) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= N+1. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  EPS3    (input) DOUBLE PRECISION */
 
- /*          A small machine-dependent value which is used to perturb */
 
- /*          close eigenvalues, and to replace zero pivots. */
 
- /*  SMLNUM  (input) DOUBLE PRECISION */
 
- /*          A machine-dependent value close to the underflow threshold. */
 
- /*  BIGNUM  (input) DOUBLE PRECISION */
 
- /*          A machine-dependent value close to the overflow threshold. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          = 1:  inverse iteration did not converge; VR is set to the */
 
- /*                last iterate, and so is VI if WI.ne.0.0. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     h_dim1 = *ldh;
 
-     h_offset = 1 + h_dim1;
 
-     h__ -= h_offset;
 
-     --vr;
 
-     --vi;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
- /*     GROWTO is the threshold used in the acceptance test for an */
 
- /*     eigenvector. */
 
-     rootn = sqrt((doublereal) (*n));
 
-     growto = .1 / rootn;
 
- /* Computing MAX */
 
-     d__1 = 1., d__2 = *eps3 * rootn;
 
-     nrmsml = max(d__1,d__2) * *smlnum;
 
- /*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
 
- /*     the imaginary parts of the diagonal elements are not stored). */
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = j - 1;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
 
- /* L10: */
 
- 	}
 
- 	b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
 
- /* L20: */
 
-     }
 
-     if (*wi == 0.) {
 
- /*        Real eigenvalue. */
 
- 	if (*noinit) {
 
- /*           Set initial vector. */
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		vr[i__] = *eps3;
 
- /* L30: */
 
- 	    }
 
- 	} else {
 
- /*           Scale supplied initial vector. */
 
- 	    vnorm = _starpu_dnrm2_(n, &vr[1], &c__1);
 
- 	    d__1 = *eps3 * rootn / max(vnorm,nrmsml);
 
- 	    _starpu_dscal_(n, &d__1, &vr[1], &c__1);
 
- 	}
 
- 	if (*rightv) {
 
- /*           LU decomposition with partial pivoting of B, replacing zero */
 
- /*           pivots by EPS3. */
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		ei = h__[i__ + 1 + i__ * h_dim1];
 
- 		if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {
 
- /*                 Interchange rows and eliminate. */
 
- 		    x = b[i__ + i__ * b_dim1] / ei;
 
- 		    b[i__ + i__ * b_dim1] = ei;
 
- 		    i__2 = *n;
 
- 		    for (j = i__ + 1; j <= i__2; ++j) {
 
- 			temp = b[i__ + 1 + j * b_dim1];
 
- 			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * 
 
- 				temp;
 
- 			b[i__ + j * b_dim1] = temp;
 
- /* L40: */
 
- 		    }
 
- 		} else {
 
- /*                 Eliminate without interchange. */
 
- 		    if (b[i__ + i__ * b_dim1] == 0.) {
 
- 			b[i__ + i__ * b_dim1] = *eps3;
 
- 		    }
 
- 		    x = ei / b[i__ + i__ * b_dim1];
 
- 		    if (x != 0.) {
 
- 			i__2 = *n;
 
- 			for (j = i__ + 1; j <= i__2; ++j) {
 
- 			    b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
 
- 				    ;
 
- /* L50: */
 
- 			}
 
- 		    }
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	    if (b[*n + *n * b_dim1] == 0.) {
 
- 		b[*n + *n * b_dim1] = *eps3;
 
- 	    }
 
- 	    *(unsigned char *)trans = 'N';
 
- 	} else {
 
- /*           UL decomposition with partial pivoting of B, replacing zero */
 
- /*           pivots by EPS3. */
 
- 	    for (j = *n; j >= 2; --j) {
 
- 		ej = h__[j + (j - 1) * h_dim1];
 
- 		if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {
 
- /*                 Interchange columns and eliminate. */
 
- 		    x = b[j + j * b_dim1] / ej;
 
- 		    b[j + j * b_dim1] = ej;
 
- 		    i__1 = j - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			temp = b[i__ + (j - 1) * b_dim1];
 
- 			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * 
 
- 				temp;
 
- 			b[i__ + j * b_dim1] = temp;
 
- /* L70: */
 
- 		    }
 
- 		} else {
 
- /*                 Eliminate without interchange. */
 
- 		    if (b[j + j * b_dim1] == 0.) {
 
- 			b[j + j * b_dim1] = *eps3;
 
- 		    }
 
- 		    x = ej / b[j + j * b_dim1];
 
- 		    if (x != 0.) {
 
- 			i__1 = j - 1;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * 
 
- 				    b_dim1];
 
- /* L80: */
 
- 			}
 
- 		    }
 
- 		}
 
- /* L90: */
 
- 	    }
 
- 	    if (b[b_dim1 + 1] == 0.) {
 
- 		b[b_dim1 + 1] = *eps3;
 
- 	    }
 
- 	    *(unsigned char *)trans = 'T';
 
- 	}
 
- 	*(unsigned char *)normin = 'N';
 
- 	i__1 = *n;
 
- 	for (its = 1; its <= i__1; ++its) {
 
- /*           Solve U*x = scale*v for a right eigenvector */
 
- /*             or U'*x = scale*v for a left eigenvector, */
 
- /*           overwriting x on v. */
 
- 	    _starpu_dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
 
- 		    vr[1], &scale, &work[1], &ierr);
 
- 	    *(unsigned char *)normin = 'Y';
 
- /*           Test for sufficient growth in the norm of v. */
 
- 	    vnorm = _starpu_dasum_(n, &vr[1], &c__1);
 
- 	    if (vnorm >= growto * scale) {
 
- 		goto L120;
 
- 	    }
 
- /*           Choose new orthogonal starting vector and try again. */
 
- 	    temp = *eps3 / (rootn + 1.);
 
- 	    vr[1] = *eps3;
 
- 	    i__2 = *n;
 
- 	    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 		vr[i__] = temp;
 
- /* L100: */
 
- 	    }
 
- 	    vr[*n - its + 1] -= *eps3 * rootn;
 
- /* L110: */
 
- 	}
 
- /*        Failure to find eigenvector in N iterations. */
 
- 	*info = 1;
 
- L120:
 
- /*        Normalize eigenvector. */
 
- 	i__ = _starpu_idamax_(n, &vr[1], &c__1);
 
- 	d__2 = 1. / (d__1 = vr[i__], abs(d__1));
 
- 	_starpu_dscal_(n, &d__2, &vr[1], &c__1);
 
-     } else {
 
- /*        Complex eigenvalue. */
 
- 	if (*noinit) {
 
- /*           Set initial vector. */
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		vr[i__] = *eps3;
 
- 		vi[i__] = 0.;
 
- /* L130: */
 
- 	    }
 
- 	} else {
 
- /*           Scale supplied initial vector. */
 
- 	    d__1 = _starpu_dnrm2_(n, &vr[1], &c__1);
 
- 	    d__2 = _starpu_dnrm2_(n, &vi[1], &c__1);
 
- 	    norm = _starpu_dlapy2_(&d__1, &d__2);
 
- 	    rec = *eps3 * rootn / max(norm,nrmsml);
 
- 	    _starpu_dscal_(n, &rec, &vr[1], &c__1);
 
- 	    _starpu_dscal_(n, &rec, &vi[1], &c__1);
 
- 	}
 
- 	if (*rightv) {
 
- /*           LU decomposition with partial pivoting of B, replacing zero */
 
- /*           pivots by EPS3. */
 
- /*           The imaginary part of the (i,j)-th element of U is stored in */
 
- /*           B(j+1,i). */
 
- 	    b[b_dim1 + 2] = -(*wi);
 
- 	    i__1 = *n;
 
- 	    for (i__ = 2; i__ <= i__1; ++i__) {
 
- 		b[i__ + 1 + b_dim1] = 0.;
 
- /* L140: */
 
- 	    }
 
- 	    i__1 = *n - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		absbii = _starpu_dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * 
 
- 			b_dim1]);
 
- 		ei = h__[i__ + 1 + i__ * h_dim1];
 
- 		if (absbii < abs(ei)) {
 
- /*                 Interchange rows and eliminate. */
 
- 		    xr = b[i__ + i__ * b_dim1] / ei;
 
- 		    xi = b[i__ + 1 + i__ * b_dim1] / ei;
 
- 		    b[i__ + i__ * b_dim1] = ei;
 
- 		    b[i__ + 1 + i__ * b_dim1] = 0.;
 
- 		    i__2 = *n;
 
- 		    for (j = i__ + 1; j <= i__2; ++j) {
 
- 			temp = b[i__ + 1 + j * b_dim1];
 
- 			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * 
 
- 				temp;
 
- 			b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * 
 
- 				b_dim1] - xi * temp;
 
- 			b[i__ + j * b_dim1] = temp;
 
- 			b[j + 1 + i__ * b_dim1] = 0.;
 
- /* L150: */
 
- 		    }
 
- 		    b[i__ + 2 + i__ * b_dim1] = -(*wi);
 
- 		    b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
 
- 		    b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
 
- 		} else {
 
- /*                 Eliminate without interchanging rows. */
 
- 		    if (absbii == 0.) {
 
- 			b[i__ + i__ * b_dim1] = *eps3;
 
- 			b[i__ + 1 + i__ * b_dim1] = 0.;
 
- 			absbii = *eps3;
 
- 		    }
 
- 		    ei = ei / absbii / absbii;
 
- 		    xr = b[i__ + i__ * b_dim1] * ei;
 
- 		    xi = -b[i__ + 1 + i__ * b_dim1] * ei;
 
- 		    i__2 = *n;
 
- 		    for (j = i__ + 1; j <= i__2; ++j) {
 
- 			b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - 
 
- 				xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ 
 
- 				* b_dim1];
 
- 			b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * 
 
- 				b_dim1] - xi * b[i__ + j * b_dim1];
 
- /* L160: */
 
- 		    }
 
- 		    b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
 
- 		}
 
- /*              Compute 1-norm of offdiagonal elements of i-th row. */
 
- 		i__2 = *n - i__;
 
- 		i__3 = *n - i__;
 
- 		work[i__] = _starpu_dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) 
 
- 			+ _starpu_dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
 
- /* L170: */
 
- 	    }
 
- 	    if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {
 
- 		b[*n + *n * b_dim1] = *eps3;
 
- 	    }
 
- 	    work[*n] = 0.;
 
- 	    i1 = *n;
 
- 	    i2 = 1;
 
- 	    i3 = -1;
 
- 	} else {
 
- /*           UL decomposition with partial pivoting of conjg(B), */
 
- /*           replacing zero pivots by EPS3. */
 
- /*           The imaginary part of the (i,j)-th element of U is stored in */
 
- /*           B(j+1,i). */
 
- 	    b[*n + 1 + *n * b_dim1] = *wi;
 
- 	    i__1 = *n - 1;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		b[*n + 1 + j * b_dim1] = 0.;
 
- /* L180: */
 
- 	    }
 
- 	    for (j = *n; j >= 2; --j) {
 
- 		ej = h__[j + (j - 1) * h_dim1];
 
- 		absbjj = _starpu_dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
 
- 		if (absbjj < abs(ej)) {
 
- /*                 Interchange columns and eliminate */
 
- 		    xr = b[j + j * b_dim1] / ej;
 
- 		    xi = b[j + 1 + j * b_dim1] / ej;
 
- 		    b[j + j * b_dim1] = ej;
 
- 		    b[j + 1 + j * b_dim1] = 0.;
 
- 		    i__1 = j - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			temp = b[i__ + (j - 1) * b_dim1];
 
- 			b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
 
- 				 temp;
 
- 			b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * 
 
- 				temp;
 
- 			b[i__ + j * b_dim1] = temp;
 
- 			b[j + 1 + i__ * b_dim1] = 0.;
 
- /* L190: */
 
- 		    }
 
- 		    b[j + 1 + (j - 1) * b_dim1] = *wi;
 
- 		    b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
 
- 		    b[j + (j - 1) * b_dim1] -= xr * *wi;
 
- 		} else {
 
- /*                 Eliminate without interchange. */
 
- 		    if (absbjj == 0.) {
 
- 			b[j + j * b_dim1] = *eps3;
 
- 			b[j + 1 + j * b_dim1] = 0.;
 
- 			absbjj = *eps3;
 
- 		    }
 
- 		    ej = ej / absbjj / absbjj;
 
- 		    xr = b[j + j * b_dim1] * ej;
 
- 		    xi = -b[j + 1 + j * b_dim1] * ej;
 
- 		    i__1 = j - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] 
 
- 				- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + 
 
- 				i__ * b_dim1];
 
- 			b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - 
 
- 				xi * b[i__ + j * b_dim1];
 
- /* L200: */
 
- 		    }
 
- 		    b[j + (j - 1) * b_dim1] += *wi;
 
- 		}
 
- /*              Compute 1-norm of offdiagonal elements of j-th column. */
 
- 		i__1 = j - 1;
 
- 		i__2 = j - 1;
 
- 		work[j] = _starpu_dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + _starpu_dasum_(&
 
- 			i__2, &b[j + 1 + b_dim1], ldb);
 
- /* L210: */
 
- 	    }
 
- 	    if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {
 
- 		b[b_dim1 + 1] = *eps3;
 
- 	    }
 
- 	    work[1] = 0.;
 
- 	    i1 = 1;
 
- 	    i2 = *n;
 
- 	    i3 = 1;
 
- 	}
 
- 	i__1 = *n;
 
- 	for (its = 1; its <= i__1; ++its) {
 
- 	    scale = 1.;
 
- 	    vmax = 1.;
 
- 	    vcrit = *bignum;
 
- /*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
 
- /*             or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
 
- /*           overwriting (xr,xi) on (vr,vi). */
 
- 	    i__2 = i2;
 
- 	    i__3 = i3;
 
- 	    for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) 
 
- 		    {
 
- 		if (work[i__] > vcrit) {
 
- 		    rec = 1. / vmax;
 
- 		    _starpu_dscal_(n, &rec, &vr[1], &c__1);
 
- 		    _starpu_dscal_(n, &rec, &vi[1], &c__1);
 
- 		    scale *= rec;
 
- 		    vmax = 1.;
 
- 		    vcrit = *bignum;
 
- 		}
 
- 		xr = vr[i__];
 
- 		xi = vi[i__];
 
- 		if (*rightv) {
 
- 		    i__4 = *n;
 
- 		    for (j = i__ + 1; j <= i__4; ++j) {
 
- 			xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ 
 
- 				* b_dim1] * vi[j];
 
- 			xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ 
 
- 				* b_dim1] * vr[j];
 
- /* L220: */
 
- 		    }
 
- 		} else {
 
- 		    i__4 = i__ - 1;
 
- 		    for (j = 1; j <= i__4; ++j) {
 
- 			xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j 
 
- 				* b_dim1] * vi[j];
 
- 			xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j 
 
- 				* b_dim1] * vr[j];
 
- /* L230: */
 
- 		    }
 
- 		}
 
- 		w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__ 
 
- 			+ 1 + i__ * b_dim1], abs(d__2));
 
- 		if (w > *smlnum) {
 
- 		    if (w < 1.) {
 
- 			w1 = abs(xr) + abs(xi);
 
- 			if (w1 > w * *bignum) {
 
- 			    rec = 1. / w1;
 
- 			    _starpu_dscal_(n, &rec, &vr[1], &c__1);
 
- 			    _starpu_dscal_(n, &rec, &vi[1], &c__1);
 
- 			    xr = vr[i__];
 
- 			    xi = vi[i__];
 
- 			    scale *= rec;
 
- 			    vmax *= rec;
 
- 			}
 
- 		    }
 
- /*                 Divide by diagonal element of B. */
 
- 		    _starpu_dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + 
 
- 			    i__ * b_dim1], &vr[i__], &vi[i__]);
 
- /* Computing MAX */
 
- 		    d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(
 
- 			    d__2));
 
- 		    vmax = max(d__3,vmax);
 
- 		    vcrit = *bignum / vmax;
 
- 		} else {
 
- 		    i__4 = *n;
 
- 		    for (j = 1; j <= i__4; ++j) {
 
- 			vr[j] = 0.;
 
- 			vi[j] = 0.;
 
- /* L240: */
 
- 		    }
 
- 		    vr[i__] = 1.;
 
- 		    vi[i__] = 1.;
 
- 		    scale = 0.;
 
- 		    vmax = 1.;
 
- 		    vcrit = *bignum;
 
- 		}
 
- /* L250: */
 
- 	    }
 
- /*           Test for sufficient growth in the norm of (VR,VI). */
 
- 	    vnorm = _starpu_dasum_(n, &vr[1], &c__1) + _starpu_dasum_(n, &vi[1], &c__1);
 
- 	    if (vnorm >= growto * scale) {
 
- 		goto L280;
 
- 	    }
 
- /*           Choose a new orthogonal starting vector and try again. */
 
- 	    y = *eps3 / (rootn + 1.);
 
- 	    vr[1] = *eps3;
 
- 	    vi[1] = 0.;
 
- 	    i__3 = *n;
 
- 	    for (i__ = 2; i__ <= i__3; ++i__) {
 
- 		vr[i__] = y;
 
- 		vi[i__] = 0.;
 
- /* L260: */
 
- 	    }
 
- 	    vr[*n - its + 1] -= *eps3 * rootn;
 
- /* L270: */
 
- 	}
 
- /*        Failure to find eigenvector in N iterations */
 
- 	*info = 1;
 
- L280:
 
- /*        Normalize eigenvector. */
 
- 	vnorm = 0.;
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 	    d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]
 
- 		    , abs(d__2));
 
- 	    vnorm = max(d__3,d__4);
 
- /* L290: */
 
- 	}
 
- 	d__1 = 1. / vnorm;
 
- 	_starpu_dscal_(n, &d__1, &vr[1], &c__1);
 
- 	d__1 = 1. / vnorm;
 
- 	_starpu_dscal_(n, &d__1, &vi[1], &c__1);
 
-     }
 
-     return 0;
 
- /*     End of DLAEIN */
 
- } /* _starpu_dlaein_ */
 
 
  |