| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 | 
							- /* dgbbrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b8 = 0.;
 
- static doublereal c_b9 = 1.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dgbbrd_(char *vect, integer *m, integer *n, integer *ncc, 
 
- 	 integer *kl, integer *ku, doublereal *ab, integer *ldab, doublereal *
 
- 	d__, doublereal *e, doublereal *q, integer *ldq, doublereal *pt, 
 
- 	integer *ldpt, doublereal *c__, integer *ldc, doublereal *work, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1, 
 
- 	    q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
 
-     /* Local variables */
 
-     integer i__, j, l, j1, j2, kb;
 
-     doublereal ra, rb, rc;
 
-     integer kk, ml, mn, nr, mu;
 
-     doublereal rs;
 
-     integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     logical wantb, wantc;
 
-     integer minmn;
 
-     logical wantq;
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), 
 
- 	    _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *), _starpu_xerbla_(char *, integer *), _starpu_dlargv_(
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlartv_(integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     logical wantpt;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBBRD reduces a real general m-by-n band matrix A to upper */
 
- /*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */
 
- /*  The routine computes B, and optionally forms Q or P', or computes */
 
- /*  Q'*C for a given matrix C. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  VECT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the matrices Q and P' are to be */
 
- /*          formed. */
 
- /*          = 'N': do not form Q or P'; */
 
- /*          = 'Q': form Q only; */
 
- /*          = 'P': form P' only; */
 
- /*          = 'B': form both. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  NCC     (input) INTEGER */
 
- /*          The number of columns of the matrix C.  NCC >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals of the matrix A. KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A. KU >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the m-by-n band matrix A, stored in rows 1 to */
 
- /*          KL+KU+1. The j-th column of A is stored in the j-th column of */
 
- /*          the array AB as follows: */
 
- /*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
 
- /*          On exit, A is overwritten by values generated during the */
 
- /*          reduction. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array A. LDAB >= KL+KU+1. */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The diagonal elements of the bidiagonal matrix B. */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
 
- /*          The superdiagonal elements of the bidiagonal matrix B. */
 
- /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,M) */
 
- /*          If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q. */
 
- /*          If VECT = 'N' or 'P', the array Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. */
 
- /*          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
 
- /*  PT      (output) DOUBLE PRECISION array, dimension (LDPT,N) */
 
- /*          If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'. */
 
- /*          If VECT = 'N' or 'Q', the array PT is not referenced. */
 
- /*  LDPT    (input) INTEGER */
 
- /*          The leading dimension of the array PT. */
 
- /*          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,NCC) */
 
- /*          On entry, an m-by-ncc matrix C. */
 
- /*          On exit, C is overwritten by Q'*C. */
 
- /*          C is not referenced if NCC = 0. */
 
- /*  LDC     (input) INTEGER */
 
- /*          The leading dimension of the array C. */
 
- /*          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*max(M,N)) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --d__;
 
-     --e;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     pt_dim1 = *ldpt;
 
-     pt_offset = 1 + pt_dim1;
 
-     pt -= pt_offset;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     --work;
 
-     /* Function Body */
 
-     wantb = _starpu_lsame_(vect, "B");
 
-     wantq = _starpu_lsame_(vect, "Q") || wantb;
 
-     wantpt = _starpu_lsame_(vect, "P") || wantb;
 
-     wantc = *ncc > 0;
 
-     klu1 = *kl + *ku + 1;
 
-     *info = 0;
 
-     if (! wantq && ! wantpt && ! _starpu_lsame_(vect, "N")) {
 
- 	*info = -1;
 
-     } else if (*m < 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ncc < 0) {
 
- 	*info = -4;
 
-     } else if (*kl < 0) {
 
- 	*info = -5;
 
-     } else if (*ku < 0) {
 
- 	*info = -6;
 
-     } else if (*ldab < klu1) {
 
- 	*info = -8;
 
-     } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) {
 
- 	*info = -12;
 
-     } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) {
 
- 	*info = -14;
 
-     } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) {
 
- 	*info = -16;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGBBRD", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Initialize Q and P' to the unit matrix, if needed */
 
-     if (wantq) {
 
- 	_starpu_dlaset_("Full", m, m, &c_b8, &c_b9, &q[q_offset], ldq);
 
-     }
 
-     if (wantpt) {
 
- 	_starpu_dlaset_("Full", n, n, &c_b8, &c_b9, &pt[pt_offset], ldpt);
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
-     minmn = min(*m,*n);
 
-     if (*kl + *ku > 1) {
 
- /*        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
 
- /*        first to lower bidiagonal form and then transform to upper */
 
- /*        bidiagonal */
 
- 	if (*ku > 0) {
 
- 	    ml0 = 1;
 
- 	    mu0 = 2;
 
- 	} else {
 
- 	    ml0 = 2;
 
- 	    mu0 = 1;
 
- 	}
 
- /*        Wherever possible, plane rotations are generated and applied in */
 
- /*        vector operations of length NR over the index set J1:J2:KLU1. */
 
- /*        The sines of the plane rotations are stored in WORK(1:max(m,n)) */
 
- /*        and the cosines in WORK(max(m,n)+1:2*max(m,n)). */
 
- 	mn = max(*m,*n);
 
- /* Computing MIN */
 
- 	i__1 = *m - 1;
 
- 	klm = min(i__1,*kl);
 
- /* Computing MIN */
 
- 	i__1 = *n - 1;
 
- 	kun = min(i__1,*ku);
 
- 	kb = klm + kun;
 
- 	kb1 = kb + 1;
 
- 	inca = kb1 * *ldab;
 
- 	nr = 0;
 
- 	j1 = klm + 2;
 
- 	j2 = 1 - kun;
 
- 	i__1 = minmn;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Reduce i-th column and i-th row of matrix to bidiagonal form */
 
- 	    ml = klm + 1;
 
- 	    mu = kun + 1;
 
- 	    i__2 = kb;
 
- 	    for (kk = 1; kk <= i__2; ++kk) {
 
- 		j1 += kb;
 
- 		j2 += kb;
 
- /*              generate plane rotations to annihilate nonzero elements */
 
- /*              which have been created below the band */
 
- 		if (nr > 0) {
 
- 		    _starpu_dlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca, 
 
- 			    &work[j1], &kb1, &work[mn + j1], &kb1);
 
- 		}
 
- /*              apply plane rotations from the left */
 
- 		i__3 = kb;
 
- 		for (l = 1; l <= i__3; ++l) {
 
- 		    if (j2 - klm + l - 1 > *n) {
 
- 			nrt = nr - 1;
 
- 		    } else {
 
- 			nrt = nr;
 
- 		    }
 
- 		    if (nrt > 0) {
 
- 			_starpu_dlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) * 
 
- 				ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm 
 
- 				+ l - 1) * ab_dim1], &inca, &work[mn + j1], &
 
- 				work[j1], &kb1);
 
- 		    }
 
- /* L10: */
 
- 		}
 
- 		if (ml > ml0) {
 
- 		    if (ml <= *m - i__ + 1) {
 
- /*                    generate plane rotation to annihilate a(i+ml-1,i) */
 
- /*                    within the band, and apply rotation from the left */
 
- 			_starpu_dlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku + 
 
- 				ml + i__ * ab_dim1], &work[mn + i__ + ml - 1], 
 
- 				 &work[i__ + ml - 1], &ra);
 
- 			ab[*ku + ml - 1 + i__ * ab_dim1] = ra;
 
- 			if (i__ < *n) {
 
- /* Computing MIN */
 
- 			    i__4 = *ku + ml - 2, i__5 = *n - i__;
 
- 			    i__3 = min(i__4,i__5);
 
- 			    i__6 = *ldab - 1;
 
- 			    i__7 = *ldab - 1;
 
- 			    _starpu_drot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) * 
 
- 				    ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__ 
 
- 				    + 1) * ab_dim1], &i__7, &work[mn + i__ + 
 
- 				    ml - 1], &work[i__ + ml - 1]);
 
- 			}
 
- 		    }
 
- 		    ++nr;
 
- 		    j1 -= kb1;
 
- 		}
 
- 		if (wantq) {
 
- /*                 accumulate product of plane rotations in Q */
 
- 		    i__3 = j2;
 
- 		    i__4 = kb1;
 
- 		    for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) 
 
- 			    {
 
- 			_starpu_drot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j * 
 
- 				q_dim1 + 1], &c__1, &work[mn + j], &work[j]);
 
- /* L20: */
 
- 		    }
 
- 		}
 
- 		if (wantc) {
 
- /*                 apply plane rotations to C */
 
- 		    i__4 = j2;
 
- 		    i__3 = kb1;
 
- 		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 
 
- 			    {
 
- 			_starpu_drot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
 
- , ldc, &work[mn + j], &work[j]);
 
- /* L30: */
 
- 		    }
 
- 		}
 
- 		if (j2 + kun > *n) {
 
- /*                 adjust J2 to keep within the bounds of the matrix */
 
- 		    --nr;
 
- 		    j2 -= kb1;
 
- 		}
 
- 		i__3 = j2;
 
- 		i__4 = kb1;
 
- 		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 
- /*                 create nonzero element a(j-1,j+ku) above the band */
 
- /*                 and store it in WORK(n+1:2*n) */
 
- 		    work[j + kun] = work[j] * ab[(j + kun) * ab_dim1 + 1];
 
- 		    ab[(j + kun) * ab_dim1 + 1] = work[mn + j] * ab[(j + kun) 
 
- 			    * ab_dim1 + 1];
 
- /* L40: */
 
- 		}
 
- /*              generate plane rotations to annihilate nonzero elements */
 
- /*              which have been generated above the band */
 
- 		if (nr > 0) {
 
- 		    _starpu_dlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
 
- 			    work[j1 + kun], &kb1, &work[mn + j1 + kun], &kb1);
 
- 		}
 
- /*              apply plane rotations from the right */
 
- 		i__4 = kb;
 
- 		for (l = 1; l <= i__4; ++l) {
 
- 		    if (j2 + l - 1 > *m) {
 
- 			nrt = nr - 1;
 
- 		    } else {
 
- 			nrt = nr;
 
- 		    }
 
- 		    if (nrt > 0) {
 
- 			_starpu_dlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
 
- 				inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
 
- 				work[mn + j1 + kun], &work[j1 + kun], &kb1);
 
- 		    }
 
- /* L50: */
 
- 		}
 
- 		if (ml == ml0 && mu > mu0) {
 
- 		    if (mu <= *n - i__ + 1) {
 
- /*                    generate plane rotation to annihilate a(i,i+mu-1) */
 
- /*                    within the band, and apply rotation from the right */
 
- 			_starpu_dlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1], 
 
- 				&ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1], 
 
- 				&work[mn + i__ + mu - 1], &work[i__ + mu - 1], 
 
- 				 &ra);
 
- 			ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1] = ra;
 
- /* Computing MIN */
 
- 			i__3 = *kl + mu - 2, i__5 = *m - i__;
 
- 			i__4 = min(i__3,i__5);
 
- 			_starpu_drot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) * 
 
- 				ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu 
 
- 				- 1) * ab_dim1], &c__1, &work[mn + i__ + mu - 
 
- 				1], &work[i__ + mu - 1]);
 
- 		    }
 
- 		    ++nr;
 
- 		    j1 -= kb1;
 
- 		}
 
- 		if (wantpt) {
 
- /*                 accumulate product of plane rotations in P' */
 
- 		    i__4 = j2;
 
- 		    i__3 = kb1;
 
- 		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 
 
- 			    {
 
- 			_starpu_drot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j + 
 
- 				kun + pt_dim1], ldpt, &work[mn + j + kun], &
 
- 				work[j + kun]);
 
- /* L60: */
 
- 		    }
 
- 		}
 
- 		if (j2 + kb > *m) {
 
- /*                 adjust J2 to keep within the bounds of the matrix */
 
- 		    --nr;
 
- 		    j2 -= kb1;
 
- 		}
 
- 		i__3 = j2;
 
- 		i__4 = kb1;
 
- 		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 
- /*                 create nonzero element a(j+kl+ku,j+ku-1) below the */
 
- /*                 band and store it in WORK(1:n) */
 
- 		    work[j + kb] = work[j + kun] * ab[klu1 + (j + kun) * 
 
- 			    ab_dim1];
 
- 		    ab[klu1 + (j + kun) * ab_dim1] = work[mn + j + kun] * ab[
 
- 			    klu1 + (j + kun) * ab_dim1];
 
- /* L70: */
 
- 		}
 
- 		if (ml > ml0) {
 
- 		    --ml;
 
- 		} else {
 
- 		    --mu;
 
- 		}
 
- /* L80: */
 
- 	    }
 
- /* L90: */
 
- 	}
 
-     }
 
-     if (*ku == 0 && *kl > 0) {
 
- /*        A has been reduced to lower bidiagonal form */
 
- /*        Transform lower bidiagonal form to upper bidiagonal by applying */
 
- /*        plane rotations from the left, storing diagonal elements in D */
 
- /*        and off-diagonal elements in E */
 
- /* Computing MIN */
 
- 	i__2 = *m - 1;
 
- 	i__1 = min(i__2,*n);
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    _starpu_dlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs, 
 
- 		    &ra);
 
- 	    d__[i__] = ra;
 
- 	    if (i__ < *n) {
 
- 		e[i__] = rs * ab[(i__ + 1) * ab_dim1 + 1];
 
- 		ab[(i__ + 1) * ab_dim1 + 1] = rc * ab[(i__ + 1) * ab_dim1 + 1]
 
- 			;
 
- 	    }
 
- 	    if (wantq) {
 
- 		_starpu_drot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 + 
 
- 			1], &c__1, &rc, &rs);
 
- 	    }
 
- 	    if (wantc) {
 
- 		_starpu_drot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1], 
 
- 			ldc, &rc, &rs);
 
- 	    }
 
- /* L100: */
 
- 	}
 
- 	if (*m <= *n) {
 
- 	    d__[*m] = ab[*m * ab_dim1 + 1];
 
- 	}
 
-     } else if (*ku > 0) {
 
- /*        A has been reduced to upper bidiagonal form */
 
- 	if (*m < *n) {
 
- /*           Annihilate a(m,m+1) by applying plane rotations from the */
 
- /*           right, storing diagonal elements in D and off-diagonal */
 
- /*           elements in E */
 
- 	    rb = ab[*ku + (*m + 1) * ab_dim1];
 
- 	    for (i__ = *m; i__ >= 1; --i__) {
 
- 		_starpu_dlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
 
- 		d__[i__] = ra;
 
- 		if (i__ > 1) {
 
- 		    rb = -rs * ab[*ku + i__ * ab_dim1];
 
- 		    e[i__ - 1] = rc * ab[*ku + i__ * ab_dim1];
 
- 		}
 
- 		if (wantpt) {
 
- 		    _starpu_drot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1], 
 
- 			    ldpt, &rc, &rs);
 
- 		}
 
- /* L110: */
 
- 	    }
 
- 	} else {
 
- /*           Copy off-diagonal elements to E and diagonal elements to D */
 
- 	    i__1 = minmn - 1;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		e[i__] = ab[*ku + (i__ + 1) * ab_dim1];
 
- /* L120: */
 
- 	    }
 
- 	    i__1 = minmn;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		d__[i__] = ab[*ku + 1 + i__ * ab_dim1];
 
- /* L130: */
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        A is diagonal. Set elements of E to zero and copy diagonal */
 
- /*        elements to D. */
 
- 	i__1 = minmn - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    e[i__] = 0.;
 
- /* L140: */
 
- 	}
 
- 	i__1 = minmn;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    d__[i__] = ab[i__ * ab_dim1 + 1];
 
- /* L150: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGBBRD */
 
- } /* _starpu_dgbbrd_ */
 
 
  |