| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 | /* dtrti2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dtrti2_(char *uplo, char *diag, integer *n, doublereal *	a, integer *lda, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer j;    doublereal ajj;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical _starpu_lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int _starpu_dtrmv_(char *, char *, char *, integer *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);    logical nounit;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTRTI2 computes the inverse of a real upper or lower triangular *//*  matrix. *//*  This is the Level 2 BLAS version of the algorithm. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the matrix A is upper or lower triangular. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  DIAG    (input) CHARACTER*1 *//*          Specifies whether or not the matrix A is unit triangular. *//*          = 'N':  Non-unit triangular *//*          = 'U':  Unit triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the triangular matrix A.  If UPLO = 'U', the *//*          leading n by n upper triangular part of the array A contains *//*          the upper triangular matrix, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n by n lower triangular part of the array A contains *//*          the lower triangular matrix, and the strictly upper *//*          triangular part of A is not referenced.  If DIAG = 'U', the *//*          diagonal elements of A are also not referenced and are *//*          assumed to be 1. *//*          On exit, the (triangular) inverse of the original matrix, in *//*          the same storage format. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -k, the k-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    nounit = _starpu_lsame_(diag, "N");    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (! nounit && ! _starpu_lsame_(diag, "U")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTRTI2", &i__1);	return 0;    }    if (upper) {/*        Compute inverse of upper triangular matrix. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (nounit) {		a[j + j * a_dim1] = 1. / a[j + j * a_dim1];		ajj = -a[j + j * a_dim1];	    } else {		ajj = -1.;	    }/*           Compute elements 1:j-1 of j-th column. */	    i__2 = j - 1;	    _starpu_dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &		    a[j * a_dim1 + 1], &c__1);	    i__2 = j - 1;	    _starpu_dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);/* L10: */	}    } else {/*        Compute inverse of lower triangular matrix. */	for (j = *n; j >= 1; --j) {	    if (nounit) {		a[j + j * a_dim1] = 1. / a[j + j * a_dim1];		ajj = -a[j + j * a_dim1];	    } else {		ajj = -1.;	    }	    if (j < *n) {/*              Compute elements j+1:n of j-th column. */		i__1 = *n - j;		_starpu_dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + 			1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);		i__1 = *n - j;		_starpu_dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);	    }/* L20: */	}    }    return 0;/*     End of DTRTI2 */} /* _starpu_dtrti2_ */
 |