| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 | /* dtrsen.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c_n1 = -1;/* Subroutine */ int _starpu_dtrsen_(char *job, char *compq, logical *select, integer 	*n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, 	doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal 	*sep, doublereal *work, integer *lwork, integer *iwork, integer *	liwork, integer *info){    /* System generated locals */    integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer k, n1, n2, kk, nn, ks;    doublereal est;    integer kase;    logical pair;    integer ierr;    logical swap;    doublereal scale;    extern logical _starpu_lsame_(char *, char *);    integer isave[3], lwmin;    logical wantq, wants;    doublereal rnorm;    extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *);    extern doublereal _starpu_dlange_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *);    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    logical wantbh;    extern /* Subroutine */ int _starpu_dtrexc_(char *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *, 	    doublereal *, integer *);    integer liwmin;    logical wantsp, lquery;    extern /* Subroutine */ int _starpu_dtrsyl_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTRSEN reorders the real Schur factorization of a real matrix *//*  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in *//*  the leading diagonal blocks of the upper quasi-triangular matrix T, *//*  and the leading columns of Q form an orthonormal basis of the *//*  corresponding right invariant subspace. *//*  Optionally the routine computes the reciprocal condition numbers of *//*  the cluster of eigenvalues and/or the invariant subspace. *//*  T must be in Schur canonical form (as returned by DHSEQR), that is, *//*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each *//*  2-by-2 diagonal block has its diagonal elemnts equal and its *//*  off-diagonal elements of opposite sign. *//*  Arguments *//*  ========= *//*  JOB     (input) CHARACTER*1 *//*          Specifies whether condition numbers are required for the *//*          cluster of eigenvalues (S) or the invariant subspace (SEP): *//*          = 'N': none; *//*          = 'E': for eigenvalues only (S); *//*          = 'V': for invariant subspace only (SEP); *//*          = 'B': for both eigenvalues and invariant subspace (S and *//*                 SEP). *//*  COMPQ   (input) CHARACTER*1 *//*          = 'V': update the matrix Q of Schur vectors; *//*          = 'N': do not update Q. *//*  SELECT  (input) LOGICAL array, dimension (N) *//*          SELECT specifies the eigenvalues in the selected cluster. To *//*          select a real eigenvalue w(j), SELECT(j) must be set to *//*          .TRUE.. To select a complex conjugate pair of eigenvalues *//*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, *//*          either SELECT(j) or SELECT(j+1) or both must be set to *//*          .TRUE.; a complex conjugate pair of eigenvalues must be *//*          either both included in the cluster or both excluded. *//*  N       (input) INTEGER *//*          The order of the matrix T. N >= 0. *//*  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N) *//*          On entry, the upper quasi-triangular matrix T, in Schur *//*          canonical form. *//*          On exit, T is overwritten by the reordered matrix T, again in *//*          Schur canonical form, with the selected eigenvalues in the *//*          leading diagonal blocks. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= max(1,N). *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. *//*          On exit, if COMPQ = 'V', Q has been postmultiplied by the *//*          orthogonal transformation matrix which reorders T; the *//*          leading M columns of Q form an orthonormal basis for the *//*          specified invariant subspace. *//*          If COMPQ = 'N', Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. *//*          LDQ >= 1; and if COMPQ = 'V', LDQ >= N. *//*  WR      (output) DOUBLE PRECISION array, dimension (N) *//*  WI      (output) DOUBLE PRECISION array, dimension (N) *//*          The real and imaginary parts, respectively, of the reordered *//*          eigenvalues of T. The eigenvalues are stored in the same *//*          order as on the diagonal of T, with WR(i) = T(i,i) and, if *//*          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and *//*          WI(i+1) = -WI(i). Note that if a complex eigenvalue is *//*          sufficiently ill-conditioned, then its value may differ *//*          significantly from its value before reordering. *//*  M       (output) INTEGER *//*          The dimension of the specified invariant subspace. *//*          0 < = M <= N. *//*  S       (output) DOUBLE PRECISION *//*          If JOB = 'E' or 'B', S is a lower bound on the reciprocal *//*          condition number for the selected cluster of eigenvalues. *//*          S cannot underestimate the true reciprocal condition number *//*          by more than a factor of sqrt(N). If M = 0 or N, S = 1. *//*          If JOB = 'N' or 'V', S is not referenced. *//*  SEP     (output) DOUBLE PRECISION *//*          If JOB = 'V' or 'B', SEP is the estimated reciprocal *//*          condition number of the specified invariant subspace. If *//*          M = 0 or N, SEP = norm(T). *//*          If JOB = 'N' or 'E', SEP is not referenced. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If JOB = 'N', LWORK >= max(1,N); *//*          if JOB = 'E', LWORK >= max(1,M*(N-M)); *//*          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. *//*          If JOB = 'N' or 'E', LIWORK >= 1; *//*          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)). *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal size of the IWORK array, *//*          returns this value as the first entry of the IWORK array, and *//*          no error message related to LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          = 1: reordering of T failed because some eigenvalues are too *//*               close to separate (the problem is very ill-conditioned); *//*               T may have been partially reordered, and WR and WI *//*               contain the eigenvalues in the same order as in T; S and *//*               SEP (if requested) are set to zero. *//*  Further Details *//*  =============== *//*  DTRSEN first collects the selected eigenvalues by computing an *//*  orthogonal transformation Z to move them to the top left corner of T. *//*  In other words, the selected eigenvalues are the eigenvalues of T11 *//*  in: *//*                Z'*T*Z = ( T11 T12 ) n1 *//*                         (  0  T22 ) n2 *//*                            n1  n2 *//*  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns *//*  of Z span the specified invariant subspace of T. *//*  If T has been obtained from the real Schur factorization of a matrix *//*  A = Q*T*Q', then the reordered real Schur factorization of A is given *//*  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span *//*  the corresponding invariant subspace of A. *//*  The reciprocal condition number of the average of the eigenvalues of *//*  T11 may be returned in S. S lies between 0 (very badly conditioned) *//*  and 1 (very well conditioned). It is computed as follows. First we *//*  compute R so that *//*                         P = ( I  R ) n1 *//*                             ( 0  0 ) n2 *//*                               n1 n2 *//*  is the projector on the invariant subspace associated with T11. *//*  R is the solution of the Sylvester equation: *//*                        T11*R - R*T22 = T12. *//*  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote *//*  the two-norm of M. Then S is computed as the lower bound *//*                      (1 + F-norm(R)**2)**(-1/2) *//*  on the reciprocal of 2-norm(P), the true reciprocal condition number. *//*  S cannot underestimate 1 / 2-norm(P) by more than a factor of *//*  sqrt(N). *//*  An approximate error bound for the computed average of the *//*  eigenvalues of T11 is *//*                         EPS * norm(T) / S *//*  where EPS is the machine precision. *//*  The reciprocal condition number of the right invariant subspace *//*  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. *//*  SEP is defined as the separation of T11 and T22: *//*                     sep( T11, T22 ) = sigma-min( C ) *//*  where sigma-min(C) is the smallest singular value of the *//*  n1*n2-by-n1*n2 matrix *//*     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) *//*  I(m) is an m by m identity matrix, and kprod denotes the Kronecker *//*  product. We estimate sigma-min(C) by the reciprocal of an estimate of *//*  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) *//*  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). *//*  When SEP is small, small changes in T can cause large changes in *//*  the invariant subspace. An approximate bound on the maximum angular *//*  error in the computed right invariant subspace is *//*                      EPS * norm(T) / SEP *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters */    /* Parameter adjustments */    --select;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --wr;    --wi;    --work;    --iwork;    /* Function Body */    wantbh = _starpu_lsame_(job, "B");    wants = _starpu_lsame_(job, "E") || wantbh;    wantsp = _starpu_lsame_(job, "V") || wantbh;    wantq = _starpu_lsame_(compq, "V");    *info = 0;    lquery = *lwork == -1;    if (! _starpu_lsame_(job, "N") && ! wants && ! wantsp) {	*info = -1;    } else if (! _starpu_lsame_(compq, "N") && ! wantq) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*ldt < max(1,*n)) {	*info = -6;    } else if (*ldq < 1 || wantq && *ldq < *n) {	*info = -8;    } else {/*        Set M to the dimension of the specified invariant subspace, *//*        and test LWORK and LIWORK. */	*m = 0;	pair = FALSE_;	i__1 = *n;	for (k = 1; k <= i__1; ++k) {	    if (pair) {		pair = FALSE_;	    } else {		if (k < *n) {		    if (t[k + 1 + k * t_dim1] == 0.) {			if (select[k]) {			    ++(*m);			}		    } else {			pair = TRUE_;			if (select[k] || select[k + 1]) {			    *m += 2;			}		    }		} else {		    if (select[*n]) {			++(*m);		    }		}	    }/* L10: */	}	n1 = *m;	n2 = *n - *m;	nn = n1 * n2;	if (wantsp) {/* Computing MAX */	    i__1 = 1, i__2 = nn << 1;	    lwmin = max(i__1,i__2);	    liwmin = max(1,nn);	} else if (_starpu_lsame_(job, "N")) {	    lwmin = max(1,*n);	    liwmin = 1;	} else if (_starpu_lsame_(job, "E")) {	    lwmin = max(1,nn);	    liwmin = 1;	}	if (*lwork < lwmin && ! lquery) {	    *info = -15;	} else if (*liwork < liwmin && ! lquery) {	    *info = -17;	}    }    if (*info == 0) {	work[1] = (doublereal) lwmin;	iwork[1] = liwmin;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTRSEN", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible. */    if (*m == *n || *m == 0) {	if (wants) {	    *s = 1.;	}	if (wantsp) {	    *sep = _starpu_dlange_("1", n, n, &t[t_offset], ldt, &work[1]);	}	goto L40;    }/*     Collect the selected blocks at the top-left corner of T. */    ks = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (pair) {	    pair = FALSE_;	} else {	    swap = select[k];	    if (k < *n) {		if (t[k + 1 + k * t_dim1] != 0.) {		    pair = TRUE_;		    swap = swap || select[k + 1];		}	    }	    if (swap) {		++ks;/*              Swap the K-th block to position KS. */		ierr = 0;		kk = k;		if (k != ks) {		    _starpu_dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &			    kk, &ks, &work[1], &ierr);		}		if (ierr == 1 || ierr == 2) {/*                 Blocks too close to swap: exit. */		    *info = 1;		    if (wants) {			*s = 0.;		    }		    if (wantsp) {			*sep = 0.;		    }		    goto L40;		}		if (pair) {		    ++ks;		}	    }	}/* L20: */    }    if (wants) {/*        Solve Sylvester equation for R: *//*           T11*R - R*T22 = scale*T12 */	_starpu_dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);	_starpu_dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 		+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);/*        Estimate the reciprocal of the condition number of the cluster *//*        of eigenvalues. */	rnorm = _starpu_dlange_("F", &n1, &n2, &work[1], &n1, &work[1]);	if (rnorm == 0.) {	    *s = 1.;	} else {	    *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));	}    }    if (wantsp) {/*        Estimate sep(T11,T22). */	est = 0.;	kase = 0;L30:	_starpu_dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);	if (kase != 0) {	    if (kase == 1) {/*              Solve  T11*R - R*T22 = scale*X. */		_starpu_dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &			ierr);	    } else {/*              Solve  T11'*R - R*T22' = scale*X. */		_starpu_dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &			ierr);	    }	    goto L30;	}	*sep = scale / est;    }L40:/*     Store the output eigenvalues in WR and WI. */    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	wr[k] = t[k + k * t_dim1];	wi[k] = 0.;/* L50: */    }    i__1 = *n - 1;    for (k = 1; k <= i__1; ++k) {	if (t[k + 1 + k * t_dim1] != 0.) {	    wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((		    d__2 = t[k + 1 + k * t_dim1], abs(d__2)));	    wi[k + 1] = -wi[k];	}/* L60: */    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DTRSEN */} /* _starpu_dtrsen_ */
 |