| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 | /* dsyevx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dsyevx_(char *jobz, char *range, char *uplo, integer *n, 	doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *	il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 	doublereal *z__, integer *ldz, doublereal *work, integer *lwork, 	integer *iwork, integer *ifail, integer *info){    /* System generated locals */    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, nb, jj;    doublereal eps, vll, vuu, tmp1;    integer indd, inde;    doublereal anrm;    integer imax;    doublereal rmin, rmax;    logical test;    integer itmp1, indee;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    char order[1];    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    logical lower, wantz;    extern doublereal _starpu_dlamch_(char *);    logical alleig, indeig;    integer iscale, indibl;    logical valeig;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *);    doublereal safmin;    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal abstll, bignum;    integer indtau, indisp;    extern /* Subroutine */ int _starpu_dstein_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *), 	    _starpu_dsterf_(integer *, doublereal *, doublereal *, integer *);    integer indiwo, indwkn;    extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *, 	    integer *, doublereal *);    extern /* Subroutine */ int _starpu_dstebz_(char *, char *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *, doublereal *, integer *, integer *);    integer indwrk, lwkmin;    extern /* Subroutine */ int _starpu_dorgtr_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), _starpu_dsteqr_(char *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_dormtr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, integer *);    integer llwrkn, llwork, nsplit;    doublereal smlnum;    extern /* Subroutine */ int _starpu_dsytrd_(char *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYEVX computes selected eigenvalues and, optionally, eigenvectors *//*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be *//*  selected by specifying either a range of values or a range of indices *//*  for the desired eigenvalues. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of A contains the *//*          upper triangular part of the matrix A.  If UPLO = 'L', *//*          the leading N-by-N lower triangular part of A contains *//*          the lower triangular part of the matrix A. *//*          On exit, the lower triangle (if UPLO='L') or the upper *//*          triangle (if UPLO='U') of A, including the diagonal, is *//*          destroyed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  ABSTOL  (input) DOUBLE PRECISION *//*          The absolute error tolerance for the eigenvalues. *//*          An approximate eigenvalue is accepted as converged *//*          when it is determined to lie in an interval [a,b] *//*          of width less than or equal to *//*                  ABSTOL + EPS *   max( |a|,|b| ) , *//*          where EPS is the machine precision.  If ABSTOL is less than *//*          or equal to zero, then  EPS*|T|  will be used in its place, *//*          where |T| is the 1-norm of the tridiagonal matrix obtained *//*          by reducing A to tridiagonal form. *//*          Eigenvalues will be computed most accurately when ABSTOL is *//*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. *//*          If this routine returns with INFO>0, indicating that some *//*          eigenvectors did not converge, try setting ABSTOL to *//*          2*DLAMCH('S'). *//*          See "Computing Small Singular Values of Bidiagonal Matrices *//*          with Guaranteed High Relative Accuracy," by Demmel and *//*          Kahan, LAPACK Working Note #3. *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          On normal exit, the first M elements contain the selected *//*          eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) *//*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z *//*          contain the orthonormal eigenvectors of the matrix A *//*          corresponding to the selected eigenvalues, with the i-th *//*          column of Z holding the eigenvector associated with W(i). *//*          If an eigenvector fails to converge, then that column of Z *//*          contains the latest approximation to the eigenvector, and the *//*          index of the eigenvector is returned in IFAIL. *//*          If JOBZ = 'N', then Z is not referenced. *//*          Note: the user must ensure that at least max(1,M) columns are *//*          supplied in the array Z; if RANGE = 'V', the exact value of M *//*          is not known in advance and an upper bound must be used. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= 1, when N <= 1; *//*          otherwise 8*N. *//*          For optimal efficiency, LWORK >= (NB+3)*N, *//*          where NB is the max of the blocksize for DSYTRD and DORMTR *//*          returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (5*N) *//*  IFAIL   (output) INTEGER array, dimension (N) *//*          If JOBZ = 'V', then if INFO = 0, the first M elements of *//*          IFAIL are zero.  If INFO > 0, then IFAIL contains the *//*          indices of the eigenvectors that failed to converge. *//*          If JOBZ = 'N', then IFAIL is not referenced. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, then i eigenvectors failed to converge. *//*                Their indices are stored in array IFAIL. *//* ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    --ifail;    /* Function Body */    lower = _starpu_lsame_(uplo, "L");    wantz = _starpu_lsame_(jobz, "V");    alleig = _starpu_lsame_(range, "A");    valeig = _starpu_lsame_(range, "V");    indeig = _starpu_lsame_(range, "I");    lquery = *lwork == -1;    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (alleig || valeig || indeig)) {	*info = -2;    } else if (! (lower || _starpu_lsame_(uplo, "U"))) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else {	if (valeig) {	    if (*n > 0 && *vu <= *vl) {		*info = -8;	    }	} else if (indeig) {	    if (*il < 1 || *il > max(1,*n)) {		*info = -9;	    } else if (*iu < min(*n,*il) || *iu > *n) {		*info = -10;	    }	}    }    if (*info == 0) {	if (*ldz < 1 || wantz && *ldz < *n) {	    *info = -15;	}    }    if (*info == 0) {	if (*n <= 1) {	    lwkmin = 1;	    work[1] = (doublereal) lwkmin;	} else {	    lwkmin = *n << 3;	    nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);/* Computing MAX */	    i__1 = nb, i__2 = _starpu_ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, 		    &c_n1);	    nb = max(i__1,i__2);/* Computing MAX */	    i__1 = lwkmin, i__2 = (nb + 3) * *n;	    lwkopt = max(i__1,i__2);	    work[1] = (doublereal) lwkopt;	}	if (*lwork < lwkmin && ! lquery) {	    *info = -17;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYEVX", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    *m = 0;    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (alleig || indeig) {	    *m = 1;	    w[1] = a[a_dim1 + 1];	} else {	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {		*m = 1;		w[1] = a[a_dim1 + 1];	    }	}	if (wantz) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = _starpu_dlamch_("Safe minimum");    eps = _starpu_dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);/* Computing MIN */    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));    rmax = min(d__1,d__2);/*     Scale matrix to allowable range, if necessary. */    iscale = 0;    abstll = *abstol;    if (valeig) {	vll = *vl;	vuu = *vu;    }    anrm = _starpu_dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);    if (anrm > 0. && anrm < rmin) {	iscale = 1;	sigma = rmin / anrm;    } else if (anrm > rmax) {	iscale = 1;	sigma = rmax / anrm;    }    if (iscale == 1) {	if (lower) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n - j + 1;		_starpu_dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);/* L10: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		_starpu_dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);/* L20: */	    }	}	if (*abstol > 0.) {	    abstll = *abstol * sigma;	}	if (valeig) {	    vll = *vl * sigma;	    vuu = *vu * sigma;	}    }/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */    indtau = 1;    inde = indtau + *n;    indd = inde + *n;    indwrk = indd + *n;    llwork = *lwork - indwrk + 1;    _starpu_dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[	    indtau], &work[indwrk], &llwork, &iinfo);/*     If all eigenvalues are desired and ABSTOL is less than or equal to *//*     zero, then call DSTERF or DORGTR and SSTEQR.  If this fails for *//*     some eigenvalue, then try DSTEBZ. */    test = FALSE_;    if (indeig) {	if (*il == 1 && *iu == *n) {	    test = TRUE_;	}    }    if ((alleig || test) && *abstol <= 0.) {	_starpu_dcopy_(n, &work[indd], &c__1, &w[1], &c__1);	indee = indwrk + (*n << 1);	if (! wantz) {	    i__1 = *n - 1;	    _starpu_dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);	    _starpu_dsterf_(n, &w[1], &work[indee], info);	} else {	    _starpu_dlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);	    _starpu_dorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk], &llwork, &iinfo);	    i__1 = *n - 1;	    _starpu_dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);	    _starpu_dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[		    indwrk], info);	    if (*info == 0) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    ifail[i__] = 0;/* L30: */		}	    }	}	if (*info == 0) {	    *m = *n;	    goto L40;	}	*info = 0;    }/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */    if (wantz) {	*(unsigned char *)order = 'B';    } else {	*(unsigned char *)order = 'E';    }    indibl = 1;    indisp = indibl + *n;    indiwo = indisp + *n;    _starpu_dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[	    indwrk], &iwork[indiwo], info);    if (wantz) {	_starpu_dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &		ifail[1], info);/*        Apply orthogonal matrix used in reduction to tridiagonal *//*        form to eigenvectors returned by DSTEIN. */	indwkn = inde;	llwrkn = *lwork - indwkn + 1;	_starpu_dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */L40:    if (iscale == 1) {	if (*info == 0) {	    imax = *m;	} else {	    imax = *info - 1;	}	d__1 = 1. / sigma;	_starpu_dscal_(&imax, &d__1, &w[1], &c__1);    }/*     If eigenvalues are not in order, then sort them, along with *//*     eigenvectors. */    if (wantz) {	i__1 = *m - 1;	for (j = 1; j <= i__1; ++j) {	    i__ = 0;	    tmp1 = w[j];	    i__2 = *m;	    for (jj = j + 1; jj <= i__2; ++jj) {		if (w[jj] < tmp1) {		    i__ = jj;		    tmp1 = w[jj];		}/* L50: */	    }	    if (i__ != 0) {		itmp1 = iwork[indibl + i__ - 1];		w[i__] = w[j];		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];		w[j] = tmp1;		iwork[indibl + j - 1] = itmp1;		_starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 			 &c__1);		if (*info != 0) {		    itmp1 = ifail[i__];		    ifail[i__] = ifail[j];		    ifail[j] = itmp1;		}	    }/* L60: */	}    }/*     Set WORK(1) to optimal workspace size. */    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYEVX */} /* _starpu_dsyevx_ */
 |