| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 | 
							- /* dsyevd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__0 = 0;
 
- static doublereal c_b17 = 1.;
 
- /* Subroutine */ int _starpu_dsyevd_(char *jobz, char *uplo, integer *n, doublereal *
 
- 	a, integer *lda, doublereal *w, doublereal *work, integer *lwork, 
 
- 	integer *iwork, integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal eps;
 
-     integer inde;
 
-     doublereal anrm, rmin, rmax;
 
-     integer lopt;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sigma;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iinfo, lwmin, liopt;
 
-     logical lower, wantz;
 
-     integer indwk2, llwrk2;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     integer iscale;
 
-     extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), _starpu_dstedc_(char *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, integer *, integer *, integer *), _starpu_dlacpy_(
 
- 	    char *, integer *, integer *, doublereal *, integer *, doublereal 
 
- 	    *, integer *);
 
-     doublereal safmin;
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     integer indtau;
 
-     extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
-     extern doublereal _starpu_dlansy_(char *, char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *);
 
-     integer indwrk, liwmin;
 
-     extern /* Subroutine */ int _starpu_dormtr_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *), _starpu_dsytrd_(char *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     integer *);
 
-     integer llwork;
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYEVD computes all eigenvalues and, optionally, eigenvectors of a */
 
- /*  real symmetric matrix A. If eigenvectors are desired, it uses a */
 
- /*  divide and conquer algorithm. */
 
- /*  The divide and conquer algorithm makes very mild assumptions about */
 
- /*  floating point arithmetic. It will work on machines with a guard */
 
- /*  digit in add/subtract, or on those binary machines without guard */
 
- /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 
- /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  Because of large use of BLAS of level 3, DSYEVD needs N**2 more */
 
- /*  workspace than DSYEVX. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
 
- /*          leading N-by-N upper triangular part of A contains the */
 
- /*          upper triangular part of the matrix A.  If UPLO = 'L', */
 
- /*          the leading N-by-N lower triangular part of A contains */
 
- /*          the lower triangular part of the matrix A. */
 
- /*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
 
- /*          orthonormal eigenvectors of the matrix A. */
 
- /*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
 
- /*          or the upper triangle (if UPLO='U') of A, including the */
 
- /*          diagonal, is destroyed. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the eigenvalues in ascending order. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, */
 
- /*                                         dimension (LWORK) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If N <= 1,               LWORK must be at least 1. */
 
- /*          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1. */
 
- /*          If JOBZ = 'V' and N > 1, LWORK must be at least */
 
- /*                                                1 + 6*N + 2*N**2. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal sizes of the WORK and IWORK */
 
- /*          arrays, returns these values as the first entries of the WORK */
 
- /*          and IWORK arrays, and no error message related to LWORK or */
 
- /*          LIWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If N <= 1,                LIWORK must be at least 1. */
 
- /*          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1. */
 
- /*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal sizes of the WORK and */
 
- /*          IWORK arrays, returns these values as the first entries of */
 
- /*          the WORK and IWORK arrays, and no error message related to */
 
- /*          LWORK or LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed */
 
- /*                to converge; i off-diagonal elements of an intermediate */
 
- /*                tridiagonal form did not converge to zero; */
 
- /*                if INFO = i and JOBZ = 'V', then the algorithm failed */
 
- /*                to compute an eigenvalue while working on the submatrix */
 
- /*                lying in rows and columns INFO/(N+1) through */
 
- /*                mod(INFO,N+1). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  Modified by Francoise Tisseur, University of Tennessee. */
 
- /*  Modified description of INFO. Sven, 16 Feb 05. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --w;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     lower = _starpu_lsame_(uplo, "L");
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     *info = 0;
 
-     if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (lower || _starpu_lsame_(uplo, "U"))) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     }
 
-     if (*info == 0) {
 
- 	if (*n <= 1) {
 
- 	    liwmin = 1;
 
- 	    lwmin = 1;
 
- 	    lopt = lwmin;
 
- 	    liopt = liwmin;
 
- 	} else {
 
- 	    if (wantz) {
 
- 		liwmin = *n * 5 + 3;
 
- /* Computing 2nd power */
 
- 		i__1 = *n;
 
- 		lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
 
- 	    } else {
 
- 		liwmin = 1;
 
- 		lwmin = (*n << 1) + 1;
 
- 	    }
 
- /* Computing MAX */
 
- 	    i__1 = lwmin, i__2 = (*n << 1) + _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, 
 
- 		     &c_n1, &c_n1, &c_n1);
 
- 	    lopt = max(i__1,i__2);
 
- 	    liopt = liwmin;
 
- 	}
 
- 	work[1] = (doublereal) lopt;
 
- 	iwork[1] = liopt;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -8;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -10;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSYEVD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	w[1] = a[a_dim1 + 1];
 
- 	if (wantz) {
 
- 	    a[a_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants. */
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     eps = _starpu_dlamch_("Precision");
 
-     smlnum = safmin / eps;
 
-     bignum = 1. / smlnum;
 
-     rmin = sqrt(smlnum);
 
-     rmax = sqrt(bignum);
 
- /*     Scale matrix to allowable range, if necessary. */
 
-     anrm = _starpu_dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
 
-     iscale = 0;
 
-     if (anrm > 0. && anrm < rmin) {
 
- 	iscale = 1;
 
- 	sigma = rmin / anrm;
 
-     } else if (anrm > rmax) {
 
- 	iscale = 1;
 
- 	sigma = rmax / anrm;
 
-     }
 
-     if (iscale == 1) {
 
- 	_starpu_dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, 
 
- 		info);
 
-     }
 
- /*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
 
-     inde = 1;
 
-     indtau = inde + *n;
 
-     indwrk = indtau + *n;
 
-     llwork = *lwork - indwrk + 1;
 
-     indwk2 = indwrk + *n * *n;
 
-     llwrk2 = *lwork - indwk2 + 1;
 
-     _starpu_dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
 
- 	    work[indwrk], &llwork, &iinfo);
 
-     lopt = (integer) ((*n << 1) + work[indwrk]);
 
- /*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
 
- /*     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
 
- /*     tridiagonal matrix, then call DORMTR to multiply it by the */
 
- /*     Householder transformations stored in A. */
 
-     if (! wantz) {
 
- 	_starpu_dsterf_(n, &w[1], &work[inde], info);
 
-     } else {
 
- 	_starpu_dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], &
 
- 		llwrk2, &iwork[1], liwork, info);
 
- 	_starpu_dormtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[
 
- 		indwrk], n, &work[indwk2], &llwrk2, &iinfo);
 
- 	_starpu_dlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda);
 
- /* Computing MAX */
 
- /* Computing 2nd power */
 
- 	i__3 = *n;
 
- 	i__1 = lopt, i__2 = *n * 6 + 1 + (i__3 * i__3 << 1);
 
- 	lopt = max(i__1,i__2);
 
-     }
 
- /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 
-     if (iscale == 1) {
 
- 	d__1 = 1. / sigma;
 
- 	_starpu_dscal_(n, &d__1, &w[1], &c__1);
 
-     }
 
-     work[1] = (doublereal) lopt;
 
-     iwork[1] = liopt;
 
-     return 0;
 
- /*     End of DSYEVD */
 
- } /* _starpu_dsyevd_ */
 
 
  |