| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 | 
							- /* dptts2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dptts2_(integer *n, integer *nrhs, doublereal *d__, 
 
- 	doublereal *e, doublereal *b, integer *ldb)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTTS2 solves a tridiagonal system of the form */
 
- /*     A * X = B */
 
- /*  using the L*D*L' factorization of A computed by DPTTRF.  D is a */
 
- /*  diagonal matrix specified in the vector D, L is a unit bidiagonal */
 
- /*  matrix whose subdiagonal is specified in the vector E, and X and B */
 
- /*  are N by NRHS matrices. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the tridiagonal matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the diagonal matrix D from the */
 
- /*          L*D*L' factorization of A. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) subdiagonal elements of the unit bidiagonal factor */
 
- /*          L from the L*D*L' factorization of A.  E can also be regarded */
 
- /*          as the superdiagonal of the unit bidiagonal factor U from the */
 
- /*          factorization A = U'*D*U. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the right hand side vectors B for the system of */
 
- /*          linear equations. */
 
- /*          On exit, the solution vectors, X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     if (*n <= 1) {
 
- 	if (*n == 1) {
 
- 	    d__1 = 1. / d__[1];
 
- 	    _starpu_dscal_(nrhs, &d__1, &b[b_offset], ldb);
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Solve A * X = B using the factorization A = L*D*L', */
 
- /*     overwriting each right hand side vector with its solution. */
 
-     i__1 = *nrhs;
 
-     for (j = 1; j <= i__1; ++j) {
 
- /*           Solve L * x = b. */
 
- 	i__2 = *n;
 
- 	for (i__ = 2; i__ <= i__2; ++i__) {
 
- 	    b[i__ + j * b_dim1] -= b[i__ - 1 + j * b_dim1] * e[i__ - 1];
 
- /* L10: */
 
- 	}
 
- /*           Solve D * L' * x = b. */
 
- 	b[*n + j * b_dim1] /= d__[*n];
 
- 	for (i__ = *n - 1; i__ >= 1; --i__) {
 
- 	    b[i__ + j * b_dim1] = b[i__ + j * b_dim1] / d__[i__] - b[i__ + 1 
 
- 		    + j * b_dim1] * e[i__];
 
- /* L20: */
 
- 	}
 
- /* L30: */
 
-     }
 
-     return 0;
 
- /*     End of DPTTS2 */
 
- } /* _starpu_dptts2_ */
 
 
  |