| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 | 
							- /* dlasda.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__0 = 0;
 
- static doublereal c_b11 = 0.;
 
- static doublereal c_b12 = 1.;
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dlasda_(integer *icompq, integer *smlsiz, integer *n, 
 
- 	integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer 
 
- 	*ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, 
 
- 	doublereal *z__, doublereal *poles, integer *givptr, integer *givcol, 
 
- 	integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__, 
 
- 	doublereal *s, doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, 
 
- 	    difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, 
 
- 	    poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, 
 
- 	    z_dim1, z_offset, i__1, i__2;
 
-     /* Builtin functions */
 
-     integer pow_ii(integer *, integer *);
 
-     /* Local variables */
 
-     integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf,
 
- 	     vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
 
-     doublereal beta;
 
-     integer idxq, nlvl;
 
-     doublereal alpha;
 
-     integer inode, ndiml, ndimr, idxqi, itemp;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer sqrei;
 
-     extern /* Subroutine */ int _starpu_dlasd6_(integer *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *);
 
-     integer nwork1, nwork2;
 
-     extern /* Subroutine */ int _starpu_dlasdq_(char *, integer *, integer *, integer 
 
- 	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlasdt_(integer *, integer *, 
 
- 	    integer *, integer *, integer *, integer *, integer *), _starpu_dlaset_(
 
- 	    char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *), _starpu_xerbla_(char *, integer *);
 
-     integer smlszp;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  Using a divide and conquer approach, DLASDA computes the singular */
 
- /*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
 
- /*  B with diagonal D and offdiagonal E, where M = N + SQRE. The */
 
- /*  algorithm computes the singular values in the SVD B = U * S * VT. */
 
- /*  The orthogonal matrices U and VT are optionally computed in */
 
- /*  compact form. */
 
- /*  A related subroutine, DLASD0, computes the singular values and */
 
- /*  the singular vectors in explicit form. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ICOMPQ (input) INTEGER */
 
- /*         Specifies whether singular vectors are to be computed */
 
- /*         in compact form, as follows */
 
- /*         = 0: Compute singular values only. */
 
- /*         = 1: Compute singular vectors of upper bidiagonal */
 
- /*              matrix in compact form. */
 
- /*  SMLSIZ (input) INTEGER */
 
- /*         The maximum size of the subproblems at the bottom of the */
 
- /*         computation tree. */
 
- /*  N      (input) INTEGER */
 
- /*         The row dimension of the upper bidiagonal matrix. This is */
 
- /*         also the dimension of the main diagonal array D. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         Specifies the column dimension of the bidiagonal matrix. */
 
- /*         = 0: The bidiagonal matrix has column dimension M = N; */
 
- /*         = 1: The bidiagonal matrix has column dimension M = N + 1. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         On entry D contains the main diagonal of the bidiagonal */
 
- /*         matrix. On exit D, if INFO = 0, contains its singular values. */
 
- /*  E      (input) DOUBLE PRECISION array, dimension ( M-1 ) */
 
- /*         Contains the subdiagonal entries of the bidiagonal matrix. */
 
- /*         On exit, E has been destroyed. */
 
- /*  U      (output) DOUBLE PRECISION array, */
 
- /*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
 
- /*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
 
- /*         singular vector matrices of all subproblems at the bottom */
 
- /*         level. */
 
- /*  LDU    (input) INTEGER, LDU = > N. */
 
- /*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
 
- /*         GIVNUM, and Z. */
 
- /*  VT     (output) DOUBLE PRECISION array, */
 
- /*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
 
- /*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right */
 
- /*         singular vector matrices of all subproblems at the bottom */
 
- /*         level. */
 
- /*  K      (output) INTEGER array, */
 
- /*         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
 
- /*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
 
- /*         secular equation on the computation tree. */
 
- /*  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), */
 
- /*         where NLVL = floor(log_2 (N/SMLSIZ))). */
 
- /*  DIFR   (output) DOUBLE PRECISION array, */
 
- /*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
 
- /*                  dimension ( N ) if ICOMPQ = 0. */
 
- /*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
 
- /*         record distances between singular values on the I-th */
 
- /*         level and singular values on the (I -1)-th level, and */
 
- /*         DIFR(1:N, 2 * I ) contains the normalizing factors for */
 
- /*         the right singular vector matrix. See DLASD8 for details. */
 
- /*  Z      (output) DOUBLE PRECISION array, */
 
- /*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
 
- /*                  dimension ( N ) if ICOMPQ = 0. */
 
- /*         The first K elements of Z(1, I) contain the components of */
 
- /*         the deflation-adjusted updating row vector for subproblems */
 
- /*         on the I-th level. */
 
- /*  POLES  (output) DOUBLE PRECISION array, */
 
- /*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
 
- /*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
 
- /*         POLES(1, 2*I) contain  the new and old singular values */
 
- /*         involved in the secular equations on the I-th level. */
 
- /*  GIVPTR (output) INTEGER array, */
 
- /*         dimension ( N ) if ICOMPQ = 1, and not referenced if */
 
- /*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
 
- /*         the number of Givens rotations performed on the I-th */
 
- /*         problem on the computation tree. */
 
- /*  GIVCOL (output) INTEGER array, */
 
- /*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
 
- /*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
 
- /*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
 
- /*         of Givens rotations performed on the I-th level on the */
 
- /*         computation tree. */
 
- /*  LDGCOL (input) INTEGER, LDGCOL = > N. */
 
- /*         The leading dimension of arrays GIVCOL and PERM. */
 
- /*  PERM   (output) INTEGER array, */
 
- /*         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced */
 
- /*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
 
- /*         permutations done on the I-th level of the computation tree. */
 
- /*  GIVNUM (output) DOUBLE PRECISION array, */
 
- /*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not */
 
- /*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
 
- /*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
 
- /*         values of Givens rotations performed on the I-th level on */
 
- /*         the computation tree. */
 
- /*  C      (output) DOUBLE PRECISION array, */
 
- /*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
 
- /*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
 
- /*         C( I ) contains the C-value of a Givens rotation related to */
 
- /*         the right null space of the I-th subproblem. */
 
- /*  S      (output) DOUBLE PRECISION array, dimension ( N ) if */
 
- /*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
 
- /*         and the I-th subproblem is not square, on exit, S( I ) */
 
- /*         contains the S-value of a Givens rotation related to */
 
- /*         the right null space of the I-th subproblem. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension */
 
- /*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */
 
- /*  IWORK  (workspace) INTEGER array. */
 
- /*         Dimension must be at least (7 * N). */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an singular value did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     givnum_dim1 = *ldu;
 
-     givnum_offset = 1 + givnum_dim1;
 
-     givnum -= givnum_offset;
 
-     poles_dim1 = *ldu;
 
-     poles_offset = 1 + poles_dim1;
 
-     poles -= poles_offset;
 
-     z_dim1 = *ldu;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     difr_dim1 = *ldu;
 
-     difr_offset = 1 + difr_dim1;
 
-     difr -= difr_offset;
 
-     difl_dim1 = *ldu;
 
-     difl_offset = 1 + difl_dim1;
 
-     difl -= difl_offset;
 
-     vt_dim1 = *ldu;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     --k;
 
-     --givptr;
 
-     perm_dim1 = *ldgcol;
 
-     perm_offset = 1 + perm_dim1;
 
-     perm -= perm_offset;
 
-     givcol_dim1 = *ldgcol;
 
-     givcol_offset = 1 + givcol_dim1;
 
-     givcol -= givcol_offset;
 
-     --c__;
 
-     --s;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*icompq < 0 || *icompq > 1) {
 
- 	*info = -1;
 
-     } else if (*smlsiz < 3) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -4;
 
-     } else if (*ldu < *n + *sqre) {
 
- 	*info = -8;
 
-     } else if (*ldgcol < *n) {
 
- 	*info = -17;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLASDA", &i__1);
 
- 	return 0;
 
-     }
 
-     m = *n + *sqre;
 
- /*     If the input matrix is too small, call DLASDQ to find the SVD. */
 
-     if (*n <= *smlsiz) {
 
- 	if (*icompq == 0) {
 
- 	    _starpu_dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
 
- 		    vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
 
- 		    work[1], info);
 
- 	} else {
 
- 	    _starpu_dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
 
- , ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], 
 
- 		    info);
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Book-keeping and  set up the computation tree. */
 
-     inode = 1;
 
-     ndiml = inode + *n;
 
-     ndimr = ndiml + *n;
 
-     idxq = ndimr + *n;
 
-     iwk = idxq + *n;
 
-     ncc = 0;
 
-     nru = 0;
 
-     smlszp = *smlsiz + 1;
 
-     vf = 1;
 
-     vl = vf + m;
 
-     nwork1 = vl + m;
 
-     nwork2 = nwork1 + smlszp * smlszp;
 
-     _starpu_dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
 
- 	    smlsiz);
 
- /*     for the nodes on bottom level of the tree, solve */
 
- /*     their subproblems by DLASDQ. */
 
-     ndb1 = (nd + 1) / 2;
 
-     i__1 = nd;
 
-     for (i__ = ndb1; i__ <= i__1; ++i__) {
 
- /*        IC : center row of each node */
 
- /*        NL : number of rows of left  subproblem */
 
- /*        NR : number of rows of right subproblem */
 
- /*        NLF: starting row of the left   subproblem */
 
- /*        NRF: starting row of the right  subproblem */
 
- 	i1 = i__ - 1;
 
- 	ic = iwork[inode + i1];
 
- 	nl = iwork[ndiml + i1];
 
- 	nlp1 = nl + 1;
 
- 	nr = iwork[ndimr + i1];
 
- 	nlf = ic - nl;
 
- 	nrf = ic + 1;
 
- 	idxqi = idxq + nlf - 2;
 
- 	vfi = vf + nlf - 1;
 
- 	vli = vl + nlf - 1;
 
- 	sqrei = 1;
 
- 	if (*icompq == 0) {
 
- 	    _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
 
- 	    _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
 
- 		    work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], 
 
- 		    &nl, &work[nwork2], info);
 
- 	    itemp = nwork1 + nl * smlszp;
 
- 	    _starpu_dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
 
- 	    _starpu_dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
 
- 	} else {
 
- 	    _starpu_dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
 
- 	    _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], 
 
- 		    ldu);
 
- 	    _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
 
- 		    vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + 
 
- 		    u_dim1], ldu, &work[nwork1], info);
 
- 	    _starpu_dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
 
- 	    _starpu_dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
 
- 		    ;
 
- 	}
 
- 	if (*info != 0) {
 
- 	    return 0;
 
- 	}
 
- 	i__2 = nl;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    iwork[idxqi + j] = j;
 
- /* L10: */
 
- 	}
 
- 	if (i__ == nd && *sqre == 0) {
 
- 	    sqrei = 0;
 
- 	} else {
 
- 	    sqrei = 1;
 
- 	}
 
- 	idxqi += nlp1;
 
- 	vfi += nlp1;
 
- 	vli += nlp1;
 
- 	nrp1 = nr + sqrei;
 
- 	if (*icompq == 0) {
 
- 	    _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
 
- 	    _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
 
- 		    work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], 
 
- 		    &nr, &work[nwork2], info);
 
- 	    itemp = nwork1 + (nrp1 - 1) * smlszp;
 
- 	    _starpu_dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
 
- 	    _starpu_dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
 
- 	} else {
 
- 	    _starpu_dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
 
- 	    _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], 
 
- 		    ldu);
 
- 	    _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
 
- 		    vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + 
 
- 		    u_dim1], ldu, &work[nwork1], info);
 
- 	    _starpu_dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
 
- 	    _starpu_dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
 
- 		    ;
 
- 	}
 
- 	if (*info != 0) {
 
- 	    return 0;
 
- 	}
 
- 	i__2 = nr;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    iwork[idxqi + j] = j;
 
- /* L20: */
 
- 	}
 
- /* L30: */
 
-     }
 
- /*     Now conquer each subproblem bottom-up. */
 
-     j = pow_ii(&c__2, &nlvl);
 
-     for (lvl = nlvl; lvl >= 1; --lvl) {
 
- 	lvl2 = (lvl << 1) - 1;
 
- /*        Find the first node LF and last node LL on */
 
- /*        the current level LVL. */
 
- 	if (lvl == 1) {
 
- 	    lf = 1;
 
- 	    ll = 1;
 
- 	} else {
 
- 	    i__1 = lvl - 1;
 
- 	    lf = pow_ii(&c__2, &i__1);
 
- 	    ll = (lf << 1) - 1;
 
- 	}
 
- 	i__1 = ll;
 
- 	for (i__ = lf; i__ <= i__1; ++i__) {
 
- 	    im1 = i__ - 1;
 
- 	    ic = iwork[inode + im1];
 
- 	    nl = iwork[ndiml + im1];
 
- 	    nr = iwork[ndimr + im1];
 
- 	    nlf = ic - nl;
 
- 	    nrf = ic + 1;
 
- 	    if (i__ == ll) {
 
- 		sqrei = *sqre;
 
- 	    } else {
 
- 		sqrei = 1;
 
- 	    }
 
- 	    vfi = vf + nlf - 1;
 
- 	    vli = vl + nlf - 1;
 
- 	    idxqi = idxq + nlf - 1;
 
- 	    alpha = d__[ic];
 
- 	    beta = e[ic];
 
- 	    if (*icompq == 0) {
 
- 		_starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
 
- 			work[vli], &alpha, &beta, &iwork[idxqi], &perm[
 
- 			perm_offset], &givptr[1], &givcol[givcol_offset], 
 
- 			ldgcol, &givnum[givnum_offset], ldu, &poles[
 
- 			poles_offset], &difl[difl_offset], &difr[difr_offset], 
 
- 			 &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], 
 
- 			 &iwork[iwk], info);
 
- 	    } else {
 
- 		--j;
 
- 		_starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
 
- 			work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + 
 
- 			lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * 
 
- 			givcol_dim1], ldgcol, &givnum[nlf + lvl2 * 
 
- 			givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
 
- 			difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * 
 
- 			difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], 
 
- 			&s[j], &work[nwork1], &iwork[iwk], info);
 
- 	    }
 
- 	    if (*info != 0) {
 
- 		return 0;
 
- 	    }
 
- /* L40: */
 
- 	}
 
- /* L50: */
 
-     }
 
-     return 0;
 
- /*     End of DLASDA */
 
- } /* _starpu_dlasda_ */
 
 
  |