| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | 
							- /* dlagv2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__2 = 2;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlagv2_(doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
 
- 	beta, doublereal *csl, doublereal *snl, doublereal *csr, doublereal *
 
- 	snr)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset;
 
-     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 
-     /* Local variables */
 
-     doublereal r__, t, h1, h2, h3, wi, qq, rr, wr1, wr2, ulp;
 
-     extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *), _starpu_dlag2_(
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *);
 
-     doublereal anorm, bnorm, scale1, scale2;
 
-     extern /* Subroutine */ int _starpu_dlasv2_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
 
-     doublereal ascale, bscale;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 */
 
- /*  matrix pencil (A,B) where B is upper triangular. This routine */
 
- /*  computes orthogonal (rotation) matrices given by CSL, SNL and CSR, */
 
- /*  SNR such that */
 
- /*  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 */
 
- /*     types), then */
 
- /*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ] */
 
- /*     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ] */
 
- /*     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ] */
 
- /*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ], */
 
- /*  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, */
 
- /*     then */
 
- /*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ] */
 
- /*     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ] */
 
- /*     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ] */
 
- /*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ] */
 
- /*     where b11 >= b22 > 0. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2) */
 
- /*          On entry, the 2 x 2 matrix A. */
 
- /*          On exit, A is overwritten by the ``A-part'' of the */
 
- /*          generalized Schur form. */
 
- /*  LDA     (input) INTEGER */
 
- /*          THe leading dimension of the array A.  LDA >= 2. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2) */
 
- /*          On entry, the upper triangular 2 x 2 matrix B. */
 
- /*          On exit, B is overwritten by the ``B-part'' of the */
 
- /*          generalized Schur form. */
 
- /*  LDB     (input) INTEGER */
 
- /*          THe leading dimension of the array B.  LDB >= 2. */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (2) */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (2) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (2) */
 
- /*          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the */
 
- /*          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may */
 
- /*          be zero. */
 
- /*  CSL     (output) DOUBLE PRECISION */
 
- /*          The cosine of the left rotation matrix. */
 
- /*  SNL     (output) DOUBLE PRECISION */
 
- /*          The sine of the left rotation matrix. */
 
- /*  CSR     (output) DOUBLE PRECISION */
 
- /*          The cosine of the right rotation matrix. */
 
- /*  SNR     (output) DOUBLE PRECISION */
 
- /*          The sine of the right rotation matrix. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     /* Function Body */
 
-     safmin = _starpu_dlamch_("S");
 
-     ulp = _starpu_dlamch_("P");
 
- /*     Scale A */
 
- /* Computing MAX */
 
-     d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
 
- 	    d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 = 
 
- 	    a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);
 
-     anorm = max(d__5,safmin);
 
-     ascale = 1. / anorm;
 
-     a[a_dim1 + 1] = ascale * a[a_dim1 + 1];
 
-     a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1];
 
-     a[a_dim1 + 2] = ascale * a[a_dim1 + 2];
 
-     a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2];
 
- /*     Scale B */
 
- /* Computing MAX */
 
-     d__4 = (d__3 = b[b_dim1 + 1], abs(d__3)), d__5 = (d__1 = b[(b_dim1 << 1) 
 
- 	    + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 2], abs(d__2)), d__4 
 
- 	    = max(d__4,d__5);
 
-     bnorm = max(d__4,safmin);
 
-     bscale = 1. / bnorm;
 
-     b[b_dim1 + 1] = bscale * b[b_dim1 + 1];
 
-     b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1];
 
-     b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2];
 
- /*     Check if A can be deflated */
 
-     if ((d__1 = a[a_dim1 + 2], abs(d__1)) <= ulp) {
 
- 	*csl = 1.;
 
- 	*snl = 0.;
 
- 	*csr = 1.;
 
- 	*snr = 0.;
 
- 	a[a_dim1 + 2] = 0.;
 
- 	b[b_dim1 + 2] = 0.;
 
- /*     Check if B is singular */
 
-     } else if ((d__1 = b[b_dim1 + 1], abs(d__1)) <= ulp) {
 
- 	_starpu_dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
 
- 	*csr = 1.;
 
- 	*snr = 0.;
 
- 	_starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
 
- 	_starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
 
- 	a[a_dim1 + 2] = 0.;
 
- 	b[b_dim1 + 1] = 0.;
 
- 	b[b_dim1 + 2] = 0.;
 
-     } else if ((d__1 = b[(b_dim1 << 1) + 2], abs(d__1)) <= ulp) {
 
- 	_starpu_dlartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t);
 
- 	*snr = -(*snr);
 
- 	_starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, 
 
- 		 snr);
 
- 	_starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, 
 
- 		 snr);
 
- 	*csl = 1.;
 
- 	*snl = 0.;
 
- 	a[a_dim1 + 2] = 0.;
 
- 	b[b_dim1 + 2] = 0.;
 
- 	b[(b_dim1 << 1) + 2] = 0.;
 
-     } else {
 
- /*        B is nonsingular, first compute the eigenvalues of (A,B) */
 
- 	_starpu_dlag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, &
 
- 		scale2, &wr1, &wr2, &wi);
 
- 	if (wi == 0.) {
 
- /*           two real eigenvalues, compute s*A-w*B */
 
- 	    h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1];
 
- 	    h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1];
 
- 	    h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2];
 
- 	    rr = _starpu_dlapy2_(&h1, &h2);
 
- 	    d__1 = scale1 * a[a_dim1 + 2];
 
- 	    qq = _starpu_dlapy2_(&d__1, &h3);
 
- 	    if (rr > qq) {
 
- /*              find right rotation matrix to zero 1,1 element of */
 
- /*              (sA - wB) */
 
- 		_starpu_dlartg_(&h2, &h1, csr, snr, &t);
 
- 	    } else {
 
- /*              find right rotation matrix to zero 2,1 element of */
 
- /*              (sA - wB) */
 
- 		d__1 = scale1 * a[a_dim1 + 2];
 
- 		_starpu_dlartg_(&h3, &d__1, csr, snr, &t);
 
- 	    }
 
- 	    *snr = -(*snr);
 
- 	    _starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, 
 
- 		    csr, snr);
 
- 	    _starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, 
 
- 		    csr, snr);
 
- /*           compute inf norms of A and B */
 
- /* Computing MAX */
 
- 	    d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[(a_dim1 << 1)
 
- 		     + 1], abs(d__2)), d__6 = (d__3 = a[a_dim1 + 2], abs(d__3)
 
- 		    ) + (d__4 = a[(a_dim1 << 1) + 2], abs(d__4));
 
- 	    h1 = max(d__5,d__6);
 
- /* Computing MAX */
 
- 	    d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1)
 
- 		     + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], abs(d__3)
 
- 		    ) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
 
- 	    h2 = max(d__5,d__6);
 
- 	    if (scale1 * h1 >= abs(wr1) * h2) {
 
- /*              find left rotation matrix Q to zero out B(2,1) */
 
- 		_starpu_dlartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__);
 
- 	    } else {
 
- /*              find left rotation matrix Q to zero out A(2,1) */
 
- 		_starpu_dlartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
 
- 	    }
 
- 	    _starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
 
- 	    _starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
 
- 	    a[a_dim1 + 2] = 0.;
 
- 	    b[b_dim1 + 2] = 0.;
 
- 	} else {
 
- /*           a pair of complex conjugate eigenvalues */
 
- /*           first compute the SVD of the matrix B */
 
- 	    _starpu_dlasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) + 
 
- 		    2], &r__, &t, snr, csr, snl, csl);
 
- /*           Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and */
 
- /*           Z is right rotation matrix computed from DLASV2 */
 
- 	    _starpu_drot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
 
- 	    _starpu_drot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
 
- 	    _starpu_drot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, 
 
- 		    csr, snr);
 
- 	    _starpu_drot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, 
 
- 		    csr, snr);
 
- 	    b[b_dim1 + 2] = 0.;
 
- 	    b[(b_dim1 << 1) + 1] = 0.;
 
- 	}
 
-     }
 
- /*     Unscaling */
 
-     a[a_dim1 + 1] = anorm * a[a_dim1 + 1];
 
-     a[a_dim1 + 2] = anorm * a[a_dim1 + 2];
 
-     a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1];
 
-     a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2];
 
-     b[b_dim1 + 1] = bnorm * b[b_dim1 + 1];
 
-     b[b_dim1 + 2] = bnorm * b[b_dim1 + 2];
 
-     b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1];
 
-     b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2];
 
-     if (wi == 0.) {
 
- 	alphar[1] = a[a_dim1 + 1];
 
- 	alphar[2] = a[(a_dim1 << 1) + 2];
 
- 	alphai[1] = 0.;
 
- 	alphai[2] = 0.;
 
- 	beta[1] = b[b_dim1 + 1];
 
- 	beta[2] = b[(b_dim1 << 1) + 2];
 
-     } else {
 
- 	alphar[1] = anorm * wr1 / scale1 / bnorm;
 
- 	alphai[1] = anorm * wi / scale1 / bnorm;
 
- 	alphar[2] = alphar[1];
 
- 	alphai[2] = -alphai[1];
 
- 	beta[1] = 1.;
 
- 	beta[2] = 1.;
 
-     }
 
-     return 0;
 
- /*     End of DLAGV2 */
 
- } /* _starpu_dlagv2_ */
 
 
  |