| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 | 
							- /* dlaed1.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int _starpu_dlaed1_(integer *n, doublereal *d__, doublereal *q, 
 
- 	integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, 
 
- 	doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer indxp;
 
-     extern /* Subroutine */ int _starpu_dlaed2_(integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     integer *, integer *, integer *, integer *), _starpu_dlaed3_(integer *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     integer idlmda;
 
-     extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *), _starpu_xerbla_(char *, integer *);
 
-     integer coltyp;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAED1 computes the updated eigensystem of a diagonal */
 
- /*  matrix after modification by a rank-one symmetric matrix.  This */
 
- /*  routine is used only for the eigenproblem which requires all */
 
- /*  eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles */
 
- /*  the case in which eigenvalues only or eigenvalues and eigenvectors */
 
- /*  of a full symmetric matrix (which was reduced to tridiagonal form) */
 
- /*  are desired. */
 
- /*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */
 
- /*     where Z = Q'u, u is a vector of length N with ones in the */
 
- /*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
 
- /*     The eigenvectors of the original matrix are stored in Q, and the */
 
- /*     eigenvalues are in D.  The algorithm consists of three stages: */
 
- /*        The first stage consists of deflating the size of the problem */
 
- /*        when there are multiple eigenvalues or if there is a zero in */
 
- /*        the Z vector.  For each such occurence the dimension of the */
 
- /*        secular equation problem is reduced by one.  This stage is */
 
- /*        performed by the routine DLAED2. */
 
- /*        The second stage consists of calculating the updated */
 
- /*        eigenvalues. This is done by finding the roots of the secular */
 
- /*        equation via the routine DLAED4 (as called by DLAED3). */
 
- /*        This routine also calculates the eigenvectors of the current */
 
- /*        problem. */
 
- /*        The final stage consists of computing the updated eigenvectors */
 
- /*        directly using the updated eigenvalues.  The eigenvectors for */
 
- /*        the current problem are multiplied with the eigenvectors from */
 
- /*        the overall problem. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N      (input) INTEGER */
 
- /*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*         On entry, the eigenvalues of the rank-1-perturbed matrix. */
 
- /*         On exit, the eigenvalues of the repaired matrix. */
 
- /*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*         On entry, the eigenvectors of the rank-1-perturbed matrix. */
 
- /*         On exit, the eigenvectors of the repaired tridiagonal matrix. */
 
- /*  LDQ    (input) INTEGER */
 
- /*         The leading dimension of the array Q.  LDQ >= max(1,N). */
 
- /*  INDXQ  (input/output) INTEGER array, dimension (N) */
 
- /*         On entry, the permutation which separately sorts the two */
 
- /*         subproblems in D into ascending order. */
 
- /*         On exit, the permutation which will reintegrate the */
 
- /*         subproblems back into sorted order, */
 
- /*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */
 
- /*  RHO    (input) DOUBLE PRECISION */
 
- /*         The subdiagonal entry used to create the rank-1 modification. */
 
- /*  CUTPNT (input) INTEGER */
 
- /*         The location of the last eigenvalue in the leading sub-matrix. */
 
- /*         min(1,N) <= CUTPNT <= N/2. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) */
 
- /*  IWORK  (workspace) INTEGER array, dimension (4*N) */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an eigenvalue did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  Modified by Francoise Tisseur, University of Tennessee. */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --indxq;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*ldq < max(1,*n)) {
 
- 	*info = -4;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MIN */
 
- 	i__1 = 1, i__2 = *n / 2;
 
- 	if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
 
- 	    *info = -7;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLAED1", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     The following values are integer pointers which indicate */
 
- /*     the portion of the workspace */
 
- /*     used by a particular array in DLAED2 and DLAED3. */
 
-     iz = 1;
 
-     idlmda = iz + *n;
 
-     iw = idlmda + *n;
 
-     iq2 = iw + *n;
 
-     indx = 1;
 
-     indxc = indx + *n;
 
-     coltyp = indxc + *n;
 
-     indxp = coltyp + *n;
 
- /*     Form the z-vector which consists of the last row of Q_1 and the */
 
- /*     first row of Q_2. */
 
-     _starpu_dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
 
-     zpp1 = *cutpnt + 1;
 
-     i__1 = *n - *cutpnt;
 
-     _starpu_dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
 
- /*     Deflate eigenvalues. */
 
-     _starpu_dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
 
- 	    iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
 
- 	    indxc], &iwork[indxp], &iwork[coltyp], info);
 
-     if (*info != 0) {
 
- 	goto L20;
 
-     }
 
- /*     Solve Secular Equation. */
 
-     if (k != 0) {
 
- 	is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 
 
- 		1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
 
- 	_starpu_dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], 
 
- 		 &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
 
- 		is], info);
 
- 	if (*info != 0) {
 
- 	    goto L20;
 
- 	}
 
- /*     Prepare the INDXQ sorting permutation. */
 
- 	n1 = k;
 
- 	n2 = *n - k;
 
- 	_starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
 
-     } else {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    indxq[i__] = i__;
 
- /* L10: */
 
- 	}
 
-     }
 
- L20:
 
-     return 0;
 
- /*     End of DLAED1 */
 
- } /* _starpu_dlaed1_ */
 
 
  |