| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 | /* dlaed0.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__9 = 9;static integer c__0 = 0;static integer c__2 = 2;static doublereal c_b23 = 1.;static doublereal c_b24 = 0.;static integer c__1 = 1;/* Subroutine */ int _starpu_dlaed0_(integer *icompq, integer *qsiz, integer *n, 	doublereal *d__, doublereal *e, doublereal *q, integer *ldq, 	doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double log(doublereal);    integer pow_ii(integer *, integer *);    /* Local variables */    integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;    doublereal temp;    integer curr;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer iperm;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer indxq, iwrem;    extern /* Subroutine */ int _starpu_dlaed1_(integer *, doublereal *, doublereal *, 	     integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *);    integer iqptr;    extern /* Subroutine */ int _starpu_dlaed7_(integer *, integer *, integer *, 	    integer *, integer *, integer *, doublereal *, doublereal *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *, integer *, integer *, integer *, doublereal 	    *, doublereal *, integer *, integer *);    integer tlvls;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *);    integer igivcl;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer igivnm, submat, curprb, subpbs, igivpt;    extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *);    integer curlvl, matsiz, iprmpt, smlsiz;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED0 computes all eigenvalues and corresponding eigenvectors of a *//*  symmetric tridiagonal matrix using the divide and conquer method. *//*  Arguments *//*  ========= *//*  ICOMPQ  (input) INTEGER *//*          = 0:  Compute eigenvalues only. *//*          = 1:  Compute eigenvectors of original dense symmetric matrix *//*                also.  On entry, Q contains the orthogonal matrix used *//*                to reduce the original matrix to tridiagonal form. *//*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal *//*                matrix. *//*  QSIZ   (input) INTEGER *//*         The dimension of the orthogonal matrix used to reduce *//*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry, the main diagonal of the tridiagonal matrix. *//*         On exit, its eigenvalues. *//*  E      (input) DOUBLE PRECISION array, dimension (N-1) *//*         The off-diagonal elements of the tridiagonal matrix. *//*         On exit, E has been destroyed. *//*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) *//*         On entry, Q must contain an N-by-N orthogonal matrix. *//*         If ICOMPQ = 0    Q is not referenced. *//*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the *//*                          orthogonal matrix used to reduce the full *//*                          matrix to tridiagonal form corresponding to *//*                          the subset of the full matrix which is being *//*                          decomposed at this time. *//*         If ICOMPQ = 2    On entry, Q will be the identity matrix. *//*                          On exit, Q contains the eigenvectors of the *//*                          tridiagonal matrix. *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  If eigenvectors are *//*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1. *//*  QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) *//*         Referenced only when ICOMPQ = 1.  Used to store parts of *//*         the eigenvector matrix when the updating matrix multiplies *//*         take place. *//*  LDQS   (input) INTEGER *//*         The leading dimension of the array QSTORE.  If ICOMPQ = 1, *//*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1. *//*  WORK   (workspace) DOUBLE PRECISION array, *//*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least *//*                     1 + 3*N + 2*N*lg N + 2*N**2 *//*                     ( lg( N ) = smallest integer k *//*                                 such that 2^k >= N ) *//*         If ICOMPQ = 2, the dimension of WORK must be at least *//*                     4*N + N**2. *//*  IWORK  (workspace) INTEGER array, *//*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least *//*                        6 + 6*N + 5*N*lg N. *//*                        ( lg( N ) = smallest integer k *//*                                    such that 2^k >= N ) *//*         If ICOMPQ = 2, the dimension of IWORK must be at least *//*                        3 + 5*N. *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  The algorithm failed to compute an eigenvalue while *//*                working on the submatrix lying in rows and columns *//*                INFO/(N+1) through mod(INFO,N+1). *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    qstore_dim1 = *ldqs;    qstore_offset = 1 + qstore_dim1;    qstore -= qstore_offset;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 2) {	*info = -1;    } else if (*icompq == 1 && *qsiz < max(0,*n)) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ldq < max(1,*n)) {	*info = -7;    } else if (*ldqs < max(1,*n)) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLAED0", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    smlsiz = _starpu_ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0);/*     Determine the size and placement of the submatrices, and save in *//*     the leading elements of IWORK. */    iwork[1] = *n;    subpbs = 1;    tlvls = 0;L10:    if (iwork[subpbs] > smlsiz) {	for (j = subpbs; j >= 1; --j) {	    iwork[j * 2] = (iwork[j] + 1) / 2;	    iwork[(j << 1) - 1] = iwork[j] / 2;/* L20: */	}	++tlvls;	subpbs <<= 1;	goto L10;    }    i__1 = subpbs;    for (j = 2; j <= i__1; ++j) {	iwork[j] += iwork[j - 1];/* L30: */    }/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 *//*     using rank-1 modifications (cuts). */    spm1 = subpbs - 1;    i__1 = spm1;    for (i__ = 1; i__ <= i__1; ++i__) {	submat = iwork[i__] + 1;	smm1 = submat - 1;	d__[smm1] -= (d__1 = e[smm1], abs(d__1));	d__[submat] -= (d__1 = e[smm1], abs(d__1));/* L40: */    }    indxq = (*n << 2) + 3;    if (*icompq != 2) {/*        Set up workspaces for eigenvalues only/accumulate new vectors *//*        routine */	temp = log((doublereal) (*n)) / log(2.);	lgn = (integer) temp;	if (pow_ii(&c__2, &lgn) < *n) {	    ++lgn;	}	if (pow_ii(&c__2, &lgn) < *n) {	    ++lgn;	}	iprmpt = indxq + *n + 1;	iperm = iprmpt + *n * lgn;	iqptr = iperm + *n * lgn;	igivpt = iqptr + *n + 2;	igivcl = igivpt + *n * lgn;	igivnm = 1;	iq = igivnm + (*n << 1) * lgn;/* Computing 2nd power */	i__1 = *n;	iwrem = iq + i__1 * i__1 + 1;/*        Initialize pointers */	i__1 = subpbs;	for (i__ = 0; i__ <= i__1; ++i__) {	    iwork[iprmpt + i__] = 1;	    iwork[igivpt + i__] = 1;/* L50: */	}	iwork[iqptr] = 1;    }/*     Solve each submatrix eigenproblem at the bottom of the divide and *//*     conquer tree. */    curr = 0;    i__1 = spm1;    for (i__ = 0; i__ <= i__1; ++i__) {	if (i__ == 0) {	    submat = 1;	    matsiz = iwork[1];	} else {	    submat = iwork[i__] + 1;	    matsiz = iwork[i__ + 1] - iwork[i__];	}	if (*icompq == 2) {	    _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 		    submat * q_dim1], ldq, &work[1], info);	    if (*info != 0) {		goto L130;	    }	} else {	    _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 		    iwork[iqptr + curr]], &matsiz, &work[1], info);	    if (*info != 0) {		goto L130;	    }	    if (*icompq == 1) {		_starpu_dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 			ldqs);	    }/* Computing 2nd power */	    i__2 = matsiz;	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;	    ++curr;	}	k = 1;	i__2 = iwork[i__ + 1];	for (j = submat; j <= i__2; ++j) {	    iwork[indxq + j] = k;	    ++k;/* L60: */	}/* L70: */    }/*     Successively merge eigensystems of adjacent submatrices *//*     into eigensystem for the corresponding larger matrix. *//*     while ( SUBPBS > 1 ) */    curlvl = 1;L80:    if (subpbs > 1) {	spm2 = subpbs - 2;	i__1 = spm2;	for (i__ = 0; i__ <= i__1; i__ += 2) {	    if (i__ == 0) {		submat = 1;		matsiz = iwork[2];		msd2 = iwork[1];		curprb = 0;	    } else {		submat = iwork[i__] + 1;		matsiz = iwork[i__ + 2] - iwork[i__];		msd2 = matsiz / 2;		++curprb;	    }/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) *//*     into an eigensystem of size MATSIZ. *//*     DLAED1 is used only for the full eigensystem of a tridiagonal *//*     matrix. *//*     DLAED7 handles the cases in which eigenvalues only or eigenvalues *//*     and eigenvectors of a full symmetric matrix (which was reduced to *//*     tridiagonal form) are desired. */	    if (*icompq == 2) {		_starpu_dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &			msd2, &work[1], &iwork[subpbs + 1], info);	    } else {		_starpu_dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[igivpt], &iwork[igivcl], &work[igivnm], &			work[iwrem], &iwork[subpbs + 1], info);	    }	    if (*info != 0) {		goto L130;	    }	    iwork[i__ / 2 + 1] = iwork[i__ + 2];/* L90: */	}	subpbs /= 2;	++curlvl;	goto L80;    }/*     end while *//*     Re-merge the eigenvalues/vectors which were deflated at the final *//*     merge step. */    if (*icompq == 1) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    j = iwork[indxq + i__];	    work[i__] = d__[j];	    _starpu_dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 		    + 1], &c__1);/* L100: */	}	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);    } else if (*icompq == 2) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    j = iwork[indxq + i__];	    work[i__] = d__[j];	    _starpu_dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);/* L110: */	}	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);	_starpu_dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);    } else {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    j = iwork[indxq + i__];	    work[i__] = d__[j];/* L120: */	}	_starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);    }    goto L140;L130:    *info = submat * (*n + 1) + submat + matsiz - 1;L140:    return 0;/*     End of DLAED0 */} /* _starpu_dlaed0_ */
 |