| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | /* dgttrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dgttrs_(char *trans, integer *n, integer *nrhs, 	doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2, 	integer *ipiv, doublereal *b, integer *ldb, integer *info){    /* System generated locals */    integer b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    integer j, jb, nb;    extern /* Subroutine */ int _starpu_dgtts2_(integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer itrans;    logical notran;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTTRS solves one of the systems of equations *//*     A*X = B  or  A'*X = B, *//*  with a tridiagonal matrix A using the LU factorization computed *//*  by DGTTRF. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form of the system of equations. *//*          = 'N':  A * X = B  (No transpose) *//*          = 'T':  A'* X = B  (Transpose) *//*          = 'C':  A'* X = B  (Conjugate transpose = Transpose) *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  DL      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) multipliers that define the matrix L from the *//*          LU factorization of A. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the upper triangular matrix U from *//*          the LU factorization of A. *//*  DU      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) elements of the first super-diagonal of U. *//*  DU2     (input) DOUBLE PRECISION array, dimension (N-2) *//*          The (n-2) elements of the second super-diagonal of U. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= n, row i of the matrix was *//*          interchanged with row IPIV(i).  IPIV(i) will always be either *//*          i or i+1; IPIV(i) = i indicates a row interchange was not *//*          required. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the matrix of right hand side vectors B. *//*          On exit, B is overwritten by the solution vectors X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --dl;    --d__;    --du;    --du2;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    notran = *(unsigned char *)trans == 'N' || *(unsigned char *)trans == 'n';    if (! notran && ! (*(unsigned char *)trans == 'T' || *(unsigned char *)	    trans == 't') && ! (*(unsigned char *)trans == 'C' || *(unsigned 	    char *)trans == 'c')) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*ldb < max(*n,1)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGTTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *nrhs == 0) {	return 0;    }/*     Decode TRANS */    if (notran) {	itrans = 0;    } else {	itrans = 1;    }/*     Determine the number of right-hand sides to solve at a time. */    if (*nrhs == 1) {	nb = 1;    } else {/* Computing MAX */	i__1 = 1, i__2 = _starpu_ilaenv_(&c__1, "DGTTRS", trans, n, nrhs, &c_n1, &		c_n1);	nb = max(i__1,i__2);    }    if (nb >= *nrhs) {	_starpu_dgtts2_(&itrans, n, nrhs, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[1], 		&b[b_offset], ldb);    } else {	i__1 = *nrhs;	i__2 = nb;	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {/* Computing MIN */	    i__3 = *nrhs - j + 1;	    jb = min(i__3,nb);	    _starpu_dgtts2_(&itrans, n, &jb, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[		    1], &b[j * b_dim1 + 1], ldb);/* L10: */	}    }/*     End of DGTTRS */    return 0;} /* _starpu_dgttrs_ */
 |