| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 | 
							- /* dgglse.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b31 = -1.;
 
- static doublereal c_b33 = 1.;
 
- /* Subroutine */ int _starpu_dgglse_(integer *m, integer *n, integer *p, doublereal *
 
- 	a, integer *lda, doublereal *b, integer *ldb, doublereal *c__, 
 
- 	doublereal *d__, doublereal *x, doublereal *work, integer *lwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), _starpu_daxpy_(integer 
 
- 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)
 
- 	    , _starpu_dtrmv_(char *, char *, char *, integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *), _starpu_dggrqf_(
 
- 	    integer *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *, integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer lwkmin;
 
-     extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dormrq_(char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
-     extern /* Subroutine */ int _starpu_dtrtrs_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGLSE solves the linear equality-constrained least squares (LSE) */
 
- /*  problem: */
 
- /*          minimize || c - A*x ||_2   subject to   B*x = d */
 
- /*  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given */
 
- /*  M-vector, and d is a given P-vector. It is assumed that */
 
- /*  P <= N <= M+P, and */
 
- /*           rank(B) = P and  rank( (A) ) = N. */
 
- /*                                ( (B) ) */
 
- /*  These conditions ensure that the LSE problem has a unique solution, */
 
- /*  which is obtained using a generalized RQ factorization of the */
 
- /*  matrices (B, A) given by */
 
- /*     B = (0 R)*Q,   A = Z*T*Q. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrices A and B. N >= 0. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of rows of the matrix B. 0 <= P <= N <= M+P. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, the elements on and above the diagonal of the array */
 
- /*          contain the min(M,N)-by-N upper trapezoidal matrix T. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*          On entry, the P-by-N matrix B. */
 
- /*          On exit, the upper triangle of the subarray B(1:P,N-P+1:N) */
 
- /*          contains the P-by-P upper triangular matrix R. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,P). */
 
- /*  C       (input/output) DOUBLE PRECISION array, dimension (M) */
 
- /*          On entry, C contains the right hand side vector for the */
 
- /*          least squares part of the LSE problem. */
 
- /*          On exit, the residual sum of squares for the solution */
 
- /*          is given by the sum of squares of elements N-P+1 to M of */
 
- /*          vector C. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (P) */
 
- /*          On entry, D contains the right hand side vector for the */
 
- /*          constrained equation. */
 
- /*          On exit, D is destroyed. */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, X is the solution of the LSE problem. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,M+N+P). */
 
- /*          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, */
 
- /*          where NB is an upper bound for the optimal blocksizes for */
 
- /*          DGEQRF, SGERQF, DORMQR and SORMRQ. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1:  the upper triangular factor R associated with B in the */
 
- /*                generalized RQ factorization of the pair (B, A) is */
 
- /*                singular, so that rank(B) < P; the least squares */
 
- /*                solution could not be computed. */
 
- /*          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor */
 
- /*                T associated with A in the generalized RQ factorization */
 
- /*                of the pair (B, A) is singular, so that */
 
- /*                rank( (A) ) < N; the least squares solution could not */
 
- /*                    ( (B) ) */
 
- /*                be computed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --c__;
 
-     --d__;
 
-     --x;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     mn = min(*m,*n);
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*p < 0 || *p > *n || *p < *n - *m) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*p)) {
 
- 	*info = -7;
 
-     }
 
- /*     Calculate workspace */
 
-     if (*info == 0) {
 
- 	if (*n == 0) {
 
- 	    lwkmin = 1;
 
- 	    lwkopt = 1;
 
- 	} else {
 
- 	    nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
 
- 	    nb2 = _starpu_ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1);
 
- 	    nb3 = _starpu_ilaenv_(&c__1, "DORMQR", " ", m, n, p, &c_n1);
 
- 	    nb4 = _starpu_ilaenv_(&c__1, "DORMRQ", " ", m, n, p, &c_n1);
 
- /* Computing MAX */
 
- 	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
 
- 	    nb = max(i__1,nb4);
 
- 	    lwkmin = *m + *n + *p;
 
- 	    lwkopt = *p + mn + max(*m,*n) * nb;
 
- 	}
 
- 	work[1] = (doublereal) lwkopt;
 
- 	if (*lwork < lwkmin && ! lquery) {
 
- 	    *info = -12;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGGLSE", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Compute the GRQ factorization of matrices B and A: */
 
- /*            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P */
 
- /*                     N-P  P                  (  0  R22 ) M+P-N */
 
- /*                                               N-P  P */
 
- /*     where T12 and R11 are upper triangular, and Q and Z are */
 
- /*     orthogonal. */
 
-     i__1 = *lwork - *p - mn;
 
-     _starpu_dggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p 
 
- 	    + 1], &work[*p + mn + 1], &i__1, info);
 
-     lopt = (integer) work[*p + mn + 1];
 
- /*     Update c = Z'*c = ( c1 ) N-P */
 
- /*                       ( c2 ) M+P-N */
 
-     i__1 = max(1,*m);
 
-     i__2 = *lwork - *p - mn;
 
-     _starpu_dormqr_("Left", "Transpose", m, &c__1, &mn, &a[a_offset], lda, &work[*p + 
 
- 	    1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[*p + mn + 1];
 
-     lopt = max(i__1,i__2);
 
- /*     Solve T12*x2 = d for x2 */
 
-     if (*p > 0) {
 
- 	_starpu_dtrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 
 
- 		1) * b_dim1 + 1], ldb, &d__[1], p, info);
 
- 	if (*info > 0) {
 
- 	    *info = 1;
 
- 	    return 0;
 
- 	}
 
- /*        Put the solution in X */
 
- 	_starpu_dcopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);
 
- /*        Update c1 */
 
- 	i__1 = *n - *p;
 
- 	_starpu_dgemv_("No transpose", &i__1, p, &c_b31, &a[(*n - *p + 1) * a_dim1 + 
 
- 		1], lda, &d__[1], &c__1, &c_b33, &c__[1], &c__1);
 
-     }
 
- /*     Solve R11*x1 = c1 for x1 */
 
-     if (*n > *p) {
 
- 	i__1 = *n - *p;
 
- 	i__2 = *n - *p;
 
- 	_starpu_dtrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[
 
- 		a_offset], lda, &c__[1], &i__2, info);
 
- 	if (*info > 0) {
 
- 	    *info = 2;
 
- 	    return 0;
 
- 	}
 
- /*        Put the solutions in X */
 
- 	i__1 = *n - *p;
 
- 	_starpu_dcopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);
 
-     }
 
- /*     Compute the residual vector: */
 
-     if (*m < *n) {
 
- 	nr = *m + *p - *n;
 
- 	if (nr > 0) {
 
- 	    i__1 = *n - *m;
 
- 	    _starpu_dgemv_("No transpose", &nr, &i__1, &c_b31, &a[*n - *p + 1 + (*m + 
 
- 		    1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b33, &c__[*n - 
 
- 		    *p + 1], &c__1);
 
- 	}
 
-     } else {
 
- 	nr = *p;
 
-     }
 
-     if (nr > 0) {
 
- 	_starpu_dtrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n 
 
- 		- *p + 1) * a_dim1], lda, &d__[1], &c__1);
 
- 	_starpu_daxpy_(&nr, &c_b31, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);
 
-     }
 
- /*     Backward transformation x = Q'*x */
 
-     i__1 = *lwork - *p - mn;
 
-     _starpu_dormrq_("Left", "Transpose", n, &c__1, p, &b[b_offset], ldb, &work[1], &x[
 
- 	    1], n, &work[*p + mn + 1], &i__1, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[*p + mn + 1];
 
-     work[1] = (doublereal) (*p + mn + max(i__1,i__2));
 
-     return 0;
 
- /*     End of DGGLSE */
 
- } /* _starpu_dgglse_ */
 
 
  |