| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 | /* dggglm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b32 = -1.;static doublereal c_b34 = 1.;/* Subroutine */ int _starpu_dggglm_(integer *n, integer *m, integer *p, doublereal *	a, integer *lda, doublereal *b, integer *ldb, doublereal *d__, 	doublereal *x, doublereal *y, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, nb, np, nb1, nb2, nb3, nb4, lopt;    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_dggqrf_(	    integer *, integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     integer *, integer *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer lwkmin;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *), 	    _starpu_dormrq_(char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;    extern /* Subroutine */ int _starpu_dtrtrs_(char *, char *, char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGGLM solves a general Gauss-Markov linear model (GLM) problem: *//*          minimize || y ||_2   subject to   d = A*x + B*y *//*              x *//*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a *//*  given N-vector. It is assumed that M <= N <= M+P, and *//*             rank(A) = M    and    rank( A B ) = N. *//*  Under these assumptions, the constrained equation is always *//*  consistent, and there is a unique solution x and a minimal 2-norm *//*  solution y, which is obtained using a generalized QR factorization *//*  of the matrices (A, B) given by *//*     A = Q*(R),   B = Q*T*Z. *//*           (0) *//*  In particular, if matrix B is square nonsingular, then the problem *//*  GLM is equivalent to the following weighted linear least squares *//*  problem *//*               minimize || inv(B)*(d-A*x) ||_2 *//*                   x *//*  where inv(B) denotes the inverse of B. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The number of rows of the matrices A and B.  N >= 0. *//*  M       (input) INTEGER *//*          The number of columns of the matrix A.  0 <= M <= N. *//*  P       (input) INTEGER *//*          The number of columns of the matrix B.  P >= N-M. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M) *//*          On entry, the N-by-M matrix A. *//*          On exit, the upper triangular part of the array A contains *//*          the M-by-M upper triangular matrix R. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,P) *//*          On entry, the N-by-P matrix B. *//*          On exit, if N <= P, the upper triangle of the subarray *//*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; *//*          if N > P, the elements on and above the (N-P)th subdiagonal *//*          contain the N-by-P upper trapezoidal matrix T. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,N). *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, D is the left hand side of the GLM equation. *//*          On exit, D is destroyed. *//*  X       (output) DOUBLE PRECISION array, dimension (M) *//*  Y       (output) DOUBLE PRECISION array, dimension (P) *//*          On exit, X and Y are the solutions of the GLM problem. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,N+M+P). *//*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, *//*          where NB is an upper bound for the optimal blocksizes for *//*          DGEQRF, SGERQF, DORMQR and SORMRQ. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1:  the upper triangular factor R associated with A in the *//*                generalized QR factorization of the pair (A, B) is *//*                singular, so that rank(A) < M; the least squares *//*                solution could not be computed. *//*          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal *//*                factor T associated with B in the generalized QR *//*                factorization of the pair (A, B) is singular, so that *//*                rank( A B ) < N; the least squares solution could not *//*                be computed. *//*  =================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --d__;    --x;    --y;    --work;    /* Function Body */    *info = 0;    np = min(*n,*p);    lquery = *lwork == -1;    if (*n < 0) {	*info = -1;    } else if (*m < 0 || *m > *n) {	*info = -2;    } else if (*p < 0 || *p < *n - *m) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    }/*     Calculate workspace */    if (*info == 0) {	if (*n == 0) {	    lwkmin = 1;	    lwkopt = 1;	} else {	    nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1);	    nb2 = _starpu_ilaenv_(&c__1, "DGERQF", " ", n, m, &c_n1, &c_n1);	    nb3 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1);	    nb4 = _starpu_ilaenv_(&c__1, "DORMRQ", " ", n, m, p, &c_n1);/* Computing MAX */	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);	    nb = max(i__1,nb4);	    lwkmin = *m + *n + *p;	    lwkopt = *m + np + max(*n,*p) * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < lwkmin && ! lquery) {	    *info = -12;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGGGLM", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Compute the GQR factorization of matrices A and B: *//*            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M *//*                   (  0  ) N-M             (  0    T22 ) N-M *//*                      M                     M+P-N  N-M *//*     where R11 and T22 are upper triangular, and Q and Z are *//*     orthogonal. */    i__1 = *lwork - *m - np;    _starpu_dggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 	    + 1], &work[*m + np + 1], &i__1, info);    lopt = (integer) work[*m + np + 1];/*     Update left-hand-side vector d = Q'*d = ( d1 ) M *//*                                             ( d2 ) N-M */    i__1 = max(1,*n);    i__2 = *lwork - *m - np;    _starpu_dormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], &	    d__[1], &i__1, &work[*m + np + 1], &i__2, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[*m + np + 1];    lopt = max(i__1,i__2);/*     Solve T22*y2 = d2 for y2 */    if (*n > *m) {	i__1 = *n - *m;	i__2 = *n - *m;	_starpu_dtrtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 		+ (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, 		info);	if (*info > 0) {	    *info = 1;	    return 0;	}	i__1 = *n - *m;	_starpu_dcopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);    }/*     Set y1 = 0 */    i__1 = *m + *p - *n;    for (i__ = 1; i__ <= i__1; ++i__) {	y[i__] = 0.;/* L10: */    }/*     Update d1 = d1 - T12*y2 */    i__1 = *n - *m;    _starpu_dgemv_("No transpose", m, &i__1, &c_b32, &b[(*m + *p - *n + 1) * b_dim1 + 	    1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1);/*     Solve triangular system: R11*x = d1 */    if (*m > 0) {	_starpu_dtrtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], 		lda, &d__[1], m, info);	if (*info > 0) {	    *info = 2;	    return 0;	}/*        Copy D to X */	_starpu_dcopy_(m, &d__[1], &c__1, &x[1], &c__1);    }/*     Backward transformation y = Z'*y *//* Computing MAX */    i__1 = 1, i__2 = *n - *p + 1;    i__3 = max(1,*p);    i__4 = *lwork - *m - np;    _starpu_dormrq_("Left", "Transpose", p, &c__1, &np, &b[max(i__1, i__2)+ b_dim1], 	    ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[*m + np + 1];    work[1] = (doublereal) (*m + np + max(i__1,i__2));    return 0;/*     End of DGGGLM */} /* _starpu_dggglm_ */
 |