| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | /* dgesc2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dgesc2_(integer *n, doublereal *a, integer *lda, 	doublereal *rhs, integer *ipiv, integer *jpiv, doublereal *scale){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, j;    doublereal eps, temp;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *), _starpu_dlabad_(doublereal *, doublereal *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dlaswp_(integer *, doublereal *, integer *, 	    integer *, integer *, integer *, integer *);    doublereal smlnum;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGESC2 solves a system of linear equations *//*            A * X = scale* RHS *//*  with a general N-by-N matrix A using the LU factorization with *//*  complete pivoting computed by DGETC2. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the  LU part of the factorization of the n-by-n *//*          matrix A computed by DGETC2:  A = P * L * U * Q *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1, N). *//*  RHS     (input/output) DOUBLE PRECISION array, dimension (N). *//*          On entry, the right hand side vector b. *//*          On exit, the solution vector X. *//*  IPIV    (input) INTEGER array, dimension (N). *//*          The pivot indices; for 1 <= i <= N, row i of the *//*          matrix has been interchanged with row IPIV(i). *//*  JPIV    (input) INTEGER array, dimension (N). *//*          The pivot indices; for 1 <= j <= N, column j of the *//*          matrix has been interchanged with column JPIV(j). *//*  SCALE    (output) DOUBLE PRECISION *//*           On exit, SCALE contains the scale factor. SCALE is chosen *//*           0 <= SCALE <= 1 to prevent owerflow in the solution. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*      Set constant to control owerflow */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --rhs;    --ipiv;    --jpiv;    /* Function Body */    eps = _starpu_dlamch_("P");    smlnum = _starpu_dlamch_("S") / eps;    bignum = 1. / smlnum;    _starpu_dlabad_(&smlnum, &bignum);/*     Apply permutations IPIV to RHS */    i__1 = *n - 1;    _starpu_dlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1);/*     Solve for L part */    i__1 = *n - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	i__2 = *n;	for (j = i__ + 1; j <= i__2; ++j) {	    rhs[j] -= a[j + i__ * a_dim1] * rhs[i__];/* L10: */	}/* L20: */    }/*     Solve for U part */    *scale = 1.;/*     Check for scaling */    i__ = _starpu_idamax_(n, &rhs[1], &c__1);    if (smlnum * 2. * (d__1 = rhs[i__], abs(d__1)) > (d__2 = a[*n + *n * 	    a_dim1], abs(d__2))) {	temp = .5 / (d__1 = rhs[i__], abs(d__1));	_starpu_dscal_(n, &temp, &rhs[1], &c__1);	*scale *= temp;    }    for (i__ = *n; i__ >= 1; --i__) {	temp = 1. / a[i__ + i__ * a_dim1];	rhs[i__] *= temp;	i__1 = *n;	for (j = i__ + 1; j <= i__1; ++j) {	    rhs[i__] -= rhs[j] * (a[i__ + j * a_dim1] * temp);/* L30: */	}/* L40: */    }/*     Apply permutations JPIV to the solution (RHS) */    i__1 = *n - 1;    _starpu_dlaswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1);    return 0;/*     End of DGESC2 */} /* _starpu_dgesc2_ */
 |