| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | 
							- /* dgbcon.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dgbcon_(char *norm, integer *n, integer *kl, integer *ku, 
 
- 	 doublereal *ab, integer *ldab, integer *ipiv, doublereal *anorm, 
 
- 	doublereal *rcond, doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer j;
 
-     doublereal t;
 
-     integer kd, lm, jp, ix, kase;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     integer kase1;
 
-     doublereal scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer isave[3];
 
-     extern /* Subroutine */ int _starpu_drscl_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     logical lnoti;
 
-     extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), _starpu_dlacn2_(integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlatbs_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
 
-     doublereal ainvnm;
 
-     logical onenrm;
 
-     char normin[1];
 
-     doublereal smlnum;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBCON estimates the reciprocal of the condition number of a real */
 
- /*  general band matrix A, in either the 1-norm or the infinity-norm, */
 
- /*  using the LU factorization computed by DGBTRF. */
 
- /*  An estimate is obtained for norm(inv(A)), and the reciprocal of the */
 
- /*  condition number is computed as */
 
- /*     RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NORM    (input) CHARACTER*1 */
 
- /*          Specifies whether the 1-norm condition number or the */
 
- /*          infinity-norm condition number is required: */
 
- /*          = '1' or 'O':  1-norm; */
 
- /*          = 'I':         Infinity-norm. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          Details of the LU factorization of the band matrix A, as */
 
- /*          computed by DGBTRF.  U is stored as an upper triangular band */
 
- /*          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
 
- /*          the multipliers used during the factorization are stored in */
 
- /*          rows KL+KU+2 to 2*KL+KU+1. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          The pivot indices; for 1 <= i <= N, row i of the matrix was */
 
- /*          interchanged with row IPIV(i). */
 
- /*  ANORM   (input) DOUBLE PRECISION */
 
- /*          If NORM = '1' or 'O', the 1-norm of the original matrix A. */
 
- /*          If NORM = 'I', the infinity-norm of the original matrix A. */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The reciprocal of the condition number of the matrix A, */
 
- /*          computed as RCOND = 1/(norm(A) * norm(inv(A))). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --ipiv;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     onenrm = *(unsigned char *)norm == '1' || _starpu_lsame_(norm, "O");
 
-     if (! onenrm && ! _starpu_lsame_(norm, "I")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kl < 0) {
 
- 	*info = -3;
 
-     } else if (*ku < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < (*kl << 1) + *ku + 1) {
 
- 	*info = -6;
 
-     } else if (*anorm < 0.) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGBCON", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *rcond = 0.;
 
-     if (*n == 0) {
 
- 	*rcond = 1.;
 
- 	return 0;
 
-     } else if (*anorm == 0.) {
 
- 	return 0;
 
-     }
 
-     smlnum = _starpu_dlamch_("Safe minimum");
 
- /*     Estimate the norm of inv(A). */
 
-     ainvnm = 0.;
 
-     *(unsigned char *)normin = 'N';
 
-     if (onenrm) {
 
- 	kase1 = 1;
 
-     } else {
 
- 	kase1 = 2;
 
-     }
 
-     kd = *kl + *ku + 1;
 
-     lnoti = *kl > 0;
 
-     kase = 0;
 
- L10:
 
-     _starpu_dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
 
-     if (kase != 0) {
 
- 	if (kase == kase1) {
 
- /*           Multiply by inv(L). */
 
- 	    if (lnoti) {
 
- 		i__1 = *n - 1;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		    i__2 = *kl, i__3 = *n - j;
 
- 		    lm = min(i__2,i__3);
 
- 		    jp = ipiv[j];
 
- 		    t = work[jp];
 
- 		    if (jp != j) {
 
- 			work[jp] = work[j];
 
- 			work[j] = t;
 
- 		    }
 
- 		    d__1 = -t;
 
- 		    _starpu_daxpy_(&lm, &d__1, &ab[kd + 1 + j * ab_dim1], &c__1, &
 
- 			    work[j + 1], &c__1);
 
- /* L20: */
 
- 		}
 
- 	    }
 
- /*           Multiply by inv(U). */
 
- 	    i__1 = *kl + *ku;
 
- 	    _starpu_dlatbs_("Upper", "No transpose", "Non-unit", normin, n, &i__1, &
 
- 		    ab[ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 
 
- 		    1], info);
 
- 	} else {
 
- /*           Multiply by inv(U'). */
 
- 	    i__1 = *kl + *ku;
 
- 	    _starpu_dlatbs_("Upper", "Transpose", "Non-unit", normin, n, &i__1, &ab[
 
- 		    ab_offset], ldab, &work[1], &scale, &work[(*n << 1) + 1], 
 
- 		    info);
 
- /*           Multiply by inv(L'). */
 
- 	    if (lnoti) {
 
- 		for (j = *n - 1; j >= 1; --j) {
 
- /* Computing MIN */
 
- 		    i__1 = *kl, i__2 = *n - j;
 
- 		    lm = min(i__1,i__2);
 
- 		    work[j] -= _starpu_ddot_(&lm, &ab[kd + 1 + j * ab_dim1], &c__1, &
 
- 			    work[j + 1], &c__1);
 
- 		    jp = ipiv[j];
 
- 		    if (jp != j) {
 
- 			t = work[jp];
 
- 			work[jp] = work[j];
 
- 			work[j] = t;
 
- 		    }
 
- /* L30: */
 
- 		}
 
- 	    }
 
- 	}
 
- /*        Divide X by 1/SCALE if doing so will not cause overflow. */
 
- 	*(unsigned char *)normin = 'Y';
 
- 	if (scale != 1.) {
 
- 	    ix = _starpu_idamax_(n, &work[1], &c__1);
 
- 	    if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) 
 
- 		    {
 
- 		goto L40;
 
- 	    }
 
- 	    _starpu_drscl_(n, &scale, &work[1], &c__1);
 
- 	}
 
- 	goto L10;
 
-     }
 
- /*     Compute the estimate of the reciprocal condition number. */
 
-     if (ainvnm != 0.) {
 
- 	*rcond = 1. / ainvnm / *anorm;
 
-     }
 
- L40:
 
-     return 0;
 
- /*     End of DGBCON */
 
- } /* _starpu_dgbcon_ */
 
 
  |