api.texi 195 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Multiformat Data Interface::
  16. * Codelets and Tasks::
  17. * Insert Task::
  18. * Explicit Dependencies::
  19. * Implicit Data Dependencies::
  20. * Performance Model API::
  21. * Profiling API::
  22. * Theoretical lower bound on execution time API::
  23. * CUDA extensions::
  24. * OpenCL extensions::
  25. * MIC extensions::
  26. * SCC extensions::
  27. * Miscellaneous helpers::
  28. * FXT Support::
  29. * FFT Support::
  30. * MPI::
  31. * Task Bundles::
  32. * Task Lists::
  33. * Using Parallel Tasks::
  34. * Scheduling Contexts::
  35. * Scheduling Policy::
  36. * Running drivers::
  37. * Expert mode::
  38. @end menu
  39. @node Versioning
  40. @section Versioning
  41. @defmac STARPU_MAJOR_VERSION
  42. Define the major version of StarPU
  43. @end defmac
  44. @defmac STARPU_MINOR_VERSION
  45. Define the minor version of StarPU
  46. @end defmac
  47. @defmac STARPU_RELEASE_VERSION
  48. Define the release version of StarPU
  49. @end defmac
  50. @deftypefun void starpu_get_version (int *@var{major}, int *@var{minor}, int *@var{release})
  51. Return as 3 integers the release version of StarPU.
  52. @end deftypefun
  53. @node Initialization and Termination
  54. @section Initialization and Termination
  55. @deftp {Data Type} {struct starpu_driver}
  56. @table @asis
  57. @item @code{enum starpu_worker_archtype type}
  58. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  59. STARPU_OPENCL_DRIVER are currently supported.
  60. @item @code{union id} Anonymous union
  61. @table @asis
  62. @item @code{unsigned cpu_id}
  63. Should only be used if type is STARPU_CPU_WORKER.
  64. @item @code{unsigned cuda_id}
  65. Should only be used if type is STARPU_CUDA_WORKER.
  66. @item @code{cl_device_id opencl_id}
  67. Should only be used if type is STARPU_OPENCL_WORKER.
  68. @end table
  69. @end table
  70. @end deftp
  71. @deftp {Data Type} {struct starpu_conf}
  72. This structure is passed to the @code{starpu_init} function in order
  73. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  74. When the default value is used, StarPU automatically selects the number of
  75. processing units and takes the default scheduling policy. The environment
  76. variables overwrite the equivalent parameters.
  77. @table @asis
  78. @item @code{const char *sched_policy_name} (default = NULL)
  79. This is the name of the scheduling policy. This can also be specified
  80. with the @code{STARPU_SCHED} environment variable.
  81. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  82. This is the definition of the scheduling policy. This field is ignored
  83. if @code{sched_policy_name} is set.
  84. @item @code{int ncpus} (default = -1)
  85. This is the number of CPU cores that StarPU can use. This can also be
  86. specified with the @code{STARPU_NCPU} environment variable.
  87. @item @code{int ncuda} (default = -1)
  88. This is the number of CUDA devices that StarPU can use. This can also
  89. be specified with the @code{STARPU_NCUDA} environment variable.
  90. @item @code{int nopencl} (default = -1)
  91. This is the number of OpenCL devices that StarPU can use. This can
  92. also be specified with the @code{STARPU_NOPENCL} environment variable.
  93. @item @code{int nmic} (default = -1)
  94. This is the number of MIC devices that StarPU can use. This can
  95. also be specified with the @code{STARPU_NMIC} environment variable.
  96. @item @code{int nscc} (default = -1)
  97. This is the number of SCC devices that StarPU can use. This can
  98. also be specified with the @code{STARPU_NSCC} environment variable.
  99. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  100. If this flag is set, the @code{workers_bindid} array indicates where the
  101. different workers are bound, otherwise StarPU automatically selects where to
  102. bind the different workers. This can also be specified with the
  103. @code{STARPU_WORKERS_CPUID} environment variable.
  104. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  105. If the @code{use_explicit_workers_bindid} flag is set, this array
  106. indicates where to bind the different workers. The i-th entry of the
  107. @code{workers_bindid} indicates the logical identifier of the
  108. processor which should execute the i-th worker. Note that the logical
  109. ordering of the CPUs is either determined by the OS, or provided by
  110. the @code{hwloc} library in case it is available.
  111. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  112. If this flag is set, the CUDA workers will be attached to the CUDA devices
  113. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  114. CUDA devices in a round-robin fashion. This can also be specified with the
  115. @code{STARPU_WORKERS_CUDAID} environment variable.
  116. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  117. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  118. contains the logical identifiers of the CUDA devices (as used by
  119. @code{cudaGetDevice}).
  120. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  121. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  122. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  123. the OpenCL devices in a round-robin fashion. This can also be specified with
  124. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  125. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  126. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  127. contains the logical identifiers of the OpenCL devices to be used.
  128. @item @code{unsigned use_explicit_workers_mic_gpuid} (default = 0)
  129. If this flag is set, the MIC workers will be attached to the MIC devices
  130. specified in the @code{workers_mic_gpuid} array. Otherwise, StarPU affects
  131. the MIC devices in a round-robin fashion. This can also be specified with
  132. the @code{STARPU_WORKERS_MICID} environment variable.
  133. @item @code{unsigned workers_mic_gpuid[STARPU_NMAXWORKERS]}
  134. If the @code{use_explicit_workers_mic_gpuid} flag is set, this array
  135. contains the logical identifiers of the MIC devices to be used.
  136. @item @code{unsigned use_explicit_workers_scc_gpuid} (default = 0)
  137. If this flag is set, the SCC workers will be attached to the SCC devices
  138. specified in the @code{workers_scc_gpuid} array. Otherwise, StarPU affects
  139. the SCC devices in a round-robin fashion. This can also be specified with
  140. the @code{STARPU_WORKERS_SCCID} environment variable.
  141. @item @code{unsigned workers_scc_gpuid[STARPU_NMAXWORKERS]}
  142. If the @code{use_explicit_workers_scc_gpuid} flag is set, this array
  143. contains the logical identifiers of the SCC devices to be used.
  144. @item @code{int calibrate} (default = 0)
  145. If this flag is set, StarPU will calibrate the performance models when
  146. executing tasks. If this value is equal to @code{-1}, the default value is
  147. used. If the value is equal to @code{1}, it will force continuing
  148. calibration. If the value is equal to @code{2}, the existing performance
  149. models will be overwritten. This can also be specified with the
  150. @code{STARPU_CALIBRATE} environment variable.
  151. @item @code{int bus_calibrate} (default = 0)
  152. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  153. to @code{-1}, the default value is used. This can also be specified with the
  154. @code{STARPU_BUS_CALIBRATE} environment variable.
  155. @item @code{int single_combined_worker} (default = 0)
  156. By default, StarPU executes parallel tasks concurrently.
  157. Some parallel libraries (e.g. most OpenMP implementations) however do
  158. not support concurrent calls to parallel code. In such case, setting this flag
  159. makes StarPU only start one parallel task at a time (but other
  160. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  161. task scheduler will however still however still try varying combined worker
  162. sizes to look for the most efficient ones.
  163. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  164. @item @code{mic_sink_program_path} (default = NULL)
  165. Path to the program to execute on the MIC device, compiled for MIC
  166. architecture. When set to NULL, StarPU automatically looks next to the host
  167. program location.
  168. @item @code{int disable_asynchronous_copy} (default = 0)
  169. This flag should be set to 1 to disable asynchronous copies between
  170. CPUs and all accelerators. This can also be specified with the
  171. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  172. The AMD implementation of OpenCL is known to
  173. fail when copying data asynchronously. When using this implementation,
  174. it is therefore necessary to disable asynchronous data transfers.
  175. This can also be specified at compilation time by giving to the
  176. configure script the option @code{--disable-asynchronous-copy}.
  177. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  178. This flag should be set to 1 to disable asynchronous copies between
  179. CPUs and CUDA accelerators. This can also be specified with the
  180. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  181. This can also be specified at compilation time by giving to the
  182. configure script the option @code{--disable-asynchronous-cuda-copy}.
  183. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  184. This flag should be set to 1 to disable asynchronous copies between
  185. CPUs and OpenCL accelerators. This can also be specified with the
  186. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  187. The AMD implementation of OpenCL is known to
  188. fail when copying data asynchronously. When using this implementation,
  189. it is therefore necessary to disable asynchronous data transfers.
  190. This can also be specified at compilation time by giving to the
  191. configure script the option @code{--disable-asynchronous-opencl-copy}.
  192. @item @code{int disable_asynchronous_mic_copy} (default = 0)
  193. This flag should be set to 1 to disable asynchronous copies between
  194. CPUs and MIC accelerators. This can also be specified with the
  195. @code{STARPU_DISABLE_ASYNCHRONOUS_MIC_COPY} environment variable.
  196. This can also be specified at compilation time by giving to the
  197. configure script the option @code{--disable-asynchronous-mic-copy}.
  198. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  199. This can be set to an array of CUDA device identifiers for which
  200. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  201. size is specified by the @code{n_cuda_opengl_interoperability} field below
  202. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  203. This has to be set to the size of the array pointed to by the
  204. @code{cuda_opengl_interoperability} field.
  205. @item @code{struct starpu_driver *not_launched_drivers}
  206. The drivers that should not be launched by StarPU.
  207. @item @code{unsigned n_not_launched_drivers}
  208. The number of StarPU drivers that should not be launched by StarPU.
  209. @item @code{trace_buffer_size}
  210. Specifies the buffer size used for FxT tracing. Starting from FxT version
  211. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  212. still be interesting to specify a bigger value to avoid any flushing (which
  213. would disturb the trace).
  214. @end table
  215. @end deftp
  216. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  217. This is StarPU initialization method, which must be called prior to any other
  218. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  219. policy, number of cores, ...) by passing a non-null argument. Default
  220. configuration is used if the passed argument is @code{NULL}.
  221. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  222. indicates that no worker was available (so that StarPU was not initialized).
  223. @end deftypefun
  224. @deftypefun int starpu_initialize ({struct starpu_conf *}@var{conf}, int @var{argc}, {char ***}@var{argv})
  225. This is the same as @code{starpu_init}, but also takes the @code{argc} and
  226. @code{argv} as gotten by the application. This is needed for SCC
  227. execution to initialize the communication library.
  228. @end deftypefun
  229. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  230. This function initializes the @var{conf} structure passed as argument
  231. with the default values. In case some configuration parameters are already
  232. specified through environment variables, @code{starpu_conf_init} initializes
  233. the fields of the structure according to the environment variables. For
  234. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  235. @code{.calibrate} field of the structure passed as argument.
  236. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  237. indicates that the argument was NULL.
  238. @end deftypefun
  239. @deftypefun void starpu_shutdown (void)
  240. This is StarPU termination method. It must be called at the end of the
  241. application: statistics and other post-mortem debugging information are not
  242. guaranteed to be available until this method has been called.
  243. @end deftypefun
  244. @deftypefun int starpu_asynchronous_copy_disabled (void)
  245. Return 1 if asynchronous data transfers between CPU and accelerators
  246. are disabled.
  247. @end deftypefun
  248. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  249. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  250. are disabled.
  251. @end deftypefun
  252. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  253. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  254. are disabled.
  255. @end deftypefun
  256. @node Standard memory library
  257. @section Standard memory library
  258. @defmac STARPU_MALLOC_PINNED
  259. Value passed to the function @code{starpu_malloc_flags} to
  260. indicate the memory allocation should be pinned.
  261. @end defmac
  262. @defmac STARPU_MALLOC_COUNT
  263. Value passed to the function @code{starpu_malloc_flags} to
  264. indicate the memory allocation should be in the limit defined by
  265. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  266. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  267. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  268. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  269. memory from StarPU. Memory allocated this way needs to be freed by
  270. calling the @code{starpu_free_flags} function with the same flag.
  271. @end defmac
  272. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  273. Performs a memory allocation based on the constraints defined by the
  274. given @var{flag}.
  275. @end deftypefun
  276. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  277. This functions sets an alignment constraints for @code{starpu_malloc}
  278. allocations. @var{align} must be a power of two. This is for instance called
  279. automatically by the OpenCL driver to specify its own alignment constraints.
  280. @end deftypefun
  281. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  282. This function allocates data of the given size in main memory. It will also try to pin it in
  283. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  284. thus permit data transfer and computation overlapping. The allocated buffer must
  285. be freed thanks to the @code{starpu_free} function.
  286. @end deftypefun
  287. @deftypefun int starpu_free (void *@var{A})
  288. This function frees memory which has previously been allocated with
  289. @code{starpu_malloc}.
  290. @end deftypefun
  291. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  292. This function frees memory by specifying its size. The given
  293. @var{flags} should be consistent with the ones given to
  294. @code{starpu_malloc_flags} when allocating the memory.
  295. @end deftypefun
  296. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  297. If a memory limit is defined on the given node (@pxref{Limit memory}),
  298. return the amount of available memory on the node. Otherwise return
  299. @code{-1}.
  300. @end deftypefun
  301. @node Workers' Properties
  302. @section Workers' Properties
  303. @deftp {Data Type} {enum starpu_worker_archtype}
  304. The different values are:
  305. @table @asis
  306. @item @code{STARPU_CPU_WORKER}
  307. @item @code{STARPU_CUDA_WORKER}
  308. @item @code{STARPU_OPENCL_WORKER}
  309. @item @code{STARPU_MIC_WORKER}
  310. @item @code{STARPU_SCC_WORKER}
  311. @end table
  312. @end deftp
  313. @deftypefun unsigned starpu_worker_get_count (void)
  314. This function returns the number of workers (i.e. processing units executing
  315. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  316. @end deftypefun
  317. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_worker_archtype} @var{type})
  318. Returns the number of workers of the given @var{type}. A positive
  319. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  320. the type is not valid otherwise.
  321. @end deftypefun
  322. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  323. This function returns the number of CPUs controlled by StarPU. The returned
  324. value should be at most @code{STARPU_MAXCPUS}.
  325. @end deftypefun
  326. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  327. This function returns the number of CUDA devices controlled by StarPU. The returned
  328. value should be at most @code{STARPU_MAXCUDADEVS}.
  329. @end deftypefun
  330. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  331. This function returns the number of OpenCL devices controlled by StarPU. The returned
  332. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  333. @end deftypefun
  334. @deftypefun unsigned starpu_mic_worker_get_count (void)
  335. This function returns the number of MIC workers controlled by StarPU.
  336. @end deftypefun
  337. @deftypefun unsigned starpu_mic_device_get_count (void)
  338. This function returns the number of MIC devices controlled by StarPU. The returned
  339. value should be at most @code{STARPU_MAXMICDEVS}.
  340. @end deftypefun
  341. @deftypefun unsigned starpu_scc_worker_get_count (void)
  342. This function returns the number of SCC devices controlled by StarPU. The returned
  343. value should be at most @code{STARPU_MAXSCCDEVS}.
  344. @end deftypefun
  345. @deftypefun int starpu_worker_get_id (void)
  346. This function returns the identifier of the current worker, i.e the one associated to the calling
  347. thread. The returned value is either -1 if the current context is not a StarPU
  348. worker (i.e. when called from the application outside a task or a callback), or
  349. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  350. @end deftypefun
  351. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_worker_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  352. This function gets the list of identifiers of workers with the given
  353. type. It fills the workerids array with the identifiers of the workers that have the type
  354. indicated in the first argument. The maxsize argument indicates the size of the
  355. workids array. The returned value gives the number of identifiers that were put
  356. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  357. workers with the appropriate type: in that case, the array is filled with the
  358. maxsize first elements. To avoid such overflows, the value of maxsize can be
  359. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  360. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  361. @end deftypefun
  362. @deftypefun int starpu_worker_get_by_type ({enum starpu_worker_archtype} @var{type}, int @var{num})
  363. This returns the identifier of the @var{num}-th worker that has the specified type
  364. @var{type}. If there are no such worker, -1 is returned.
  365. @end deftypefun
  366. @deftypefun int starpu_worker_get_by_devid ({enum starpu_worker_archtype} @var{type}, int @var{devid})
  367. This returns the identifier of the worker that has the specified type
  368. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  369. skipped for instance). If there are no such worker, -1 is returned.
  370. @end deftypefun
  371. @deftypefun int starpu_worker_get_devid (int @var{id})
  372. This functions returns the device id of the given worker. The worker
  373. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  374. CUDA worker, this device identifier is the logical device identifier exposed by
  375. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  376. identifier of a CPU worker is the logical identifier of the core on which the
  377. worker was bound; this identifier is either provided by the OS or by the
  378. @code{hwloc} library in case it is available.
  379. @end deftypefun
  380. @deftypefun {enum starpu_worker_archtype} starpu_worker_get_type (int @var{id})
  381. This function returns the type of processing unit associated to a
  382. worker. The worker identifier is a value returned by the
  383. @code{starpu_worker_get_id} function). The returned value
  384. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  385. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  386. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  387. identifier is unspecified.
  388. @end deftypefun
  389. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  390. This function allows to get the name of a given worker.
  391. StarPU associates a unique human readable string to each processing unit. This
  392. function copies at most the @var{maxlen} first bytes of the unique string
  393. associated to a worker identified by its identifier @var{id} into the
  394. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  395. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  396. function on an invalid identifier results in an unspecified behaviour.
  397. @end deftypefun
  398. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  399. This function returns the identifier of the memory node associated to the
  400. worker identified by @var{workerid}.
  401. @end deftypefun
  402. @deftp {Data Type} {enum starpu_node_kind}
  403. todo
  404. @table @asis
  405. @item @code{STARPU_UNUSED}
  406. @item @code{STARPU_CPU_RAM}
  407. @item @code{STARPU_CUDA_RAM}
  408. @item @code{STARPU_OPENCL_RAM}
  409. @item @code{STARPU_MIC_RAM}
  410. @item @code{STARPU_SCC_RAM}
  411. @item @code{STARPU_SCC_SHM}
  412. @end table
  413. @end deftp
  414. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  415. Returns the type of the given node as defined by @code{enum
  416. starpu_node_kind}. For example, when defining a new data interface,
  417. this function should be used in the allocation function to determine
  418. on which device the memory needs to be allocated.
  419. @end deftypefun
  420. @node Data Management
  421. @section Data Management
  422. @menu
  423. * Introduction to Data Management::
  424. * Basic Data Management API::
  425. * Access registered data from the application::
  426. @end menu
  427. This section describes the data management facilities provided by StarPU.
  428. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  429. design their own data interfaces if required.
  430. @node Introduction to Data Management
  431. @subsection Introduction
  432. Data management is done at a high-level in StarPU: rather than accessing a mere
  433. list of contiguous buffers, the tasks may manipulate data that are described by
  434. a high-level construct which we call data interface.
  435. An example of data interface is the "vector" interface which describes a
  436. contiguous data array on a spefic memory node. This interface is a simple
  437. structure containing the number of elements in the array, the size of the
  438. elements, and the address of the array in the appropriate address space (this
  439. address may be invalid if there is no valid copy of the array in the memory
  440. node). More informations on the data interfaces provided by StarPU are
  441. given in @ref{Data Interfaces}.
  442. When a piece of data managed by StarPU is used by a task, the task
  443. implementation is given a pointer to an interface describing a valid copy of
  444. the data that is accessible from the current processing unit.
  445. Every worker is associated to a memory node which is a logical abstraction of
  446. the address space from which the processing unit gets its data. For instance,
  447. the memory node associated to the different CPU workers represents main memory
  448. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  449. Every memory node is identified by a logical index which is accessible from the
  450. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  451. to StarPU, the specified memory node indicates where the piece of data
  452. initially resides (we also call this memory node the home node of a piece of
  453. data).
  454. @node Basic Data Management API
  455. @subsection Basic Data Management API
  456. @deftp {Data Type} {enum starpu_data_access_mode}
  457. This datatype describes a data access mode. The different available modes are:
  458. @table @asis
  459. @item @code{STARPU_R}: read-only mode.
  460. @item @code{STARPU_W}: write-only mode.
  461. @item @code{STARPU_RW}: read-write mode.
  462. This is equivalent to @code{STARPU_R|STARPU_W}.
  463. @item @code{STARPU_SCRATCH}: scratch memory.
  464. A temporary buffer is allocated for the task, but StarPU does not
  465. enforce data consistency---i.e. each device has its own buffer,
  466. independently from each other (even for CPUs), and no data transfer is
  467. ever performed. This is useful for temporary variables to avoid
  468. allocating/freeing buffers inside each task.
  469. Currently, no behavior is defined concerning the relation with the
  470. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  471. registration---i.e., the value of the scratch buffer is undefined at
  472. entry of the codelet function. It is being considered for future
  473. extensions at least to define the initial value. For now, data to be
  474. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  475. a @code{NULL} pointer, since the value of the provided buffer is simply
  476. ignored for now.
  477. @item @code{STARPU_REDUX}: reduction mode. TODO!
  478. @end table
  479. @end deftp
  480. In addition to that, @code{STARPU_COMMUTE} can be passed along @code{STARPU_W}
  481. or @code{STARPU_RW} to express that StarPU can let tasks commute, which is
  482. useful e.g. when bringing a contribution into some data, which can be done
  483. in any order (but still require sequential consistency against reads or
  484. non-commutative writes).
  485. @deftp {Data Type} {starpu_data_handle_t}
  486. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  487. data. Once a piece of data has been registered to StarPU, it is associated to a
  488. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  489. over the entire machine, so that we can maintain data consistency and locate
  490. data replicates for instance.
  491. @end deftp
  492. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  493. Register a piece of data into the handle located at the @var{handleptr}
  494. address. The @var{data_interface} buffer contains the initial description of the
  495. data in the home node. The @var{ops} argument is a pointer to a structure
  496. describing the different methods used to manipulate this type of interface. See
  497. @ref{struct starpu_data_interface_ops} for more details on this structure.
  498. If @code{home_node} is -1, StarPU will automatically
  499. allocate the memory when it is used for the
  500. first time in write-only mode. Once such data handle has been automatically
  501. allocated, it is possible to access it using any access mode.
  502. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  503. matrix) which can be registered by the means of helper functions (e.g.
  504. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  505. @end deftypefun
  506. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  507. Register a new piece of data into the handle @var{handledst} with the
  508. same interface as the handle @var{handlesrc}.
  509. @end deftypefun
  510. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  511. This function unregisters a data handle from StarPU. If the data was
  512. automatically allocated by StarPU because the home node was -1, all
  513. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  514. is put back into the home node in the buffer that was initially registered.
  515. Using a data handle that has been unregistered from StarPU results in an
  516. undefined behaviour.
  517. @end deftypefun
  518. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  519. This is the same as starpu_data_unregister, except that StarPU does not put back
  520. a valid copy into the home node, in the buffer that was initially registered.
  521. @end deftypefun
  522. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  523. Destroy the data handle once it is not needed anymore by any submitted
  524. task. No coherency is assumed.
  525. @end deftypefun
  526. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  527. Destroy all replicates of the data handle immediately. After data invalidation,
  528. the first access to the handle must be performed in write-only mode.
  529. Accessing an invalidated data in read-mode results in undefined
  530. behaviour.
  531. @end deftypefun
  532. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  533. Submits invalidation of the data handle after completion of previously submitted tasks.
  534. @end deftypefun
  535. @c TODO create a specific sections about user interaction with the DSM ?
  536. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  537. This function sets the write-through mask of a given data, i.e. a bitmask of
  538. nodes where the data should be always replicated after modification. It also
  539. prevents the data from being evicted from these nodes when memory gets scarse.
  540. @end deftypefun
  541. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  542. Issue a prefetch request for a given data to a given node, i.e.
  543. requests that the data be replicated to the given node, so that it is available
  544. there for tasks. If the @var{async} parameter is 0, the call will block until
  545. the transfer is achieved, else the call will return as soon as the request is
  546. scheduled (which may however have to wait for a task completion).
  547. @end deftypefun
  548. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  549. Return the handle corresponding to the data pointed to by the @var{ptr}
  550. host pointer.
  551. @end deftypefun
  552. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  553. Explicitly ask StarPU to allocate room for a piece of data on the specified
  554. memory node.
  555. @end deftypefun
  556. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  557. Query the status of the handle on the specified memory node.
  558. @end deftypefun
  559. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  560. This function allows to specify that a piece of data can be discarded
  561. without impacting the application.
  562. @end deftypefun
  563. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  564. This sets the codelets to be used for the @var{handle} when it is accessed in
  565. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  566. codelet, and reduction between per-worker buffers will be done with the
  567. @var{redux_cl} codelet.
  568. @end deftypefun
  569. @deftypefun struct starpu_data_interface_ops* starpu_data_get_interface_ops (starpu_data_handle_t @var{handle})
  570. Get a pointer to the structure describing the different methods used
  571. to manipulate the given data. See @ref{struct starpu_data_interface_ops} for more details on this structure.
  572. @end deftypefun
  573. @deftypefun unsigned starpu_data_get_sequential_consistency_flag (starpu_data_handle_t @var{handle})
  574. Return the sequential consistency flag of the given data.
  575. @end deftypefun
  576. @node Access registered data from the application
  577. @subsection Access registered data from the application
  578. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode})
  579. The application must call this function prior to accessing registered data from
  580. main memory outside tasks. StarPU ensures that the application will get an
  581. up-to-date copy of the data in main memory located where the data was
  582. originally registered, and that all concurrent accesses (e.g. from tasks) will
  583. be consistent with the access mode specified in the @var{mode} argument.
  584. @code{starpu_data_release} must be called once the application does not need to
  585. access the piece of data anymore. Note that implicit data
  586. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  587. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  588. the data, unless they have been disabled explictly by calling
  589. @code{starpu_data_set_default_sequential_consistency_flag} or
  590. @code{starpu_data_set_sequential_consistency_flag}.
  591. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  592. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  593. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  594. @end deftypefun
  595. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  596. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  597. @code{starpu_data_acquire}. When the data specified in the first argument is
  598. available in the appropriate access mode, the callback function is executed.
  599. The application may access the requested data during the execution of this
  600. callback. The callback function must call @code{starpu_data_release} once the
  601. application does not need to access the piece of data anymore.
  602. Note that implicit data dependencies are also enforced by
  603. @code{starpu_data_acquire_cb} in case they are not disabled.
  604. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  605. be called from task callbacks. Upon successful completion, this function
  606. returns 0.
  607. @end deftypefun
  608. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode})
  609. This is the same as @code{starpu_data_acquire}, except that the data will be
  610. available on the given memory node instead of main memory.
  611. @end deftypefun
  612. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_data_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  613. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  614. available on the given memory node instead of main memory.
  615. @end deftypefun
  616. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_data_access_mode} @var{mode}, code)
  617. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  618. except that the code to be executed in a callback is directly provided as a
  619. macro parameter, and the data handle is automatically released after it. This
  620. permits to easily execute code which depends on the value of some registered
  621. data. This is non-blocking too and may be called from task callbacks.
  622. @end defmac
  623. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  624. This function releases the piece of data acquired by the application either by
  625. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  626. @end deftypefun
  627. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  628. This is the same as @code{starpu_data_release}, except that the data will be
  629. available on the given memory node instead of main memory.
  630. @end deftypefun
  631. @node Data Interfaces
  632. @section Data Interfaces
  633. @menu
  634. * Registering Data::
  635. * Accessing Data Interfaces::
  636. * Defining Interface::
  637. @end menu
  638. @node Registering Data
  639. @subsection Registering Data
  640. There are several ways to register a memory region so that it can be managed by
  641. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  642. matrices as well as BCSR and CSR sparse matrices.
  643. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  644. Register a void interface. There is no data really associated to that
  645. interface, but it may be used as a synchronization mechanism. It also
  646. permits to express an abstract piece of data that is managed by the
  647. application internally: this makes it possible to forbid the
  648. concurrent execution of different tasks accessing the same "void" data
  649. in read-write concurrently.
  650. @end deftypefun
  651. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  652. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  653. typically a scalar, and initialize @var{handle} to represent this data
  654. item.
  655. @cartouche
  656. @smallexample
  657. float var;
  658. starpu_data_handle_t var_handle;
  659. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  660. @end smallexample
  661. @end cartouche
  662. @end deftypefun
  663. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  664. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  665. @var{ptr} and initialize @var{handle} to represent it.
  666. @cartouche
  667. @smallexample
  668. float vector[NX];
  669. starpu_data_handle_t vector_handle;
  670. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  671. sizeof(vector[0]));
  672. @end smallexample
  673. @end cartouche
  674. @end deftypefun
  675. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  676. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  677. pointed by @var{ptr} and initialize @var{handle} to represent it.
  678. @var{ld} specifies the number of elements between rows.
  679. a value greater than @var{nx} adds padding, which can be useful for
  680. alignment purposes.
  681. @cartouche
  682. @smallexample
  683. float *matrix;
  684. starpu_data_handle_t matrix_handle;
  685. matrix = (float*)malloc(width * height * sizeof(float));
  686. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  687. width, width, height, sizeof(float));
  688. @end smallexample
  689. @end cartouche
  690. @end deftypefun
  691. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  692. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  693. elements pointed by @var{ptr} and initialize @var{handle} to represent
  694. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  695. between rows and between z planes.
  696. @cartouche
  697. @smallexample
  698. float *block;
  699. starpu_data_handle_t block_handle;
  700. block = (float*)malloc(nx*ny*nz*sizeof(float));
  701. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  702. nx, nx*ny, nx, ny, nz, sizeof(float));
  703. @end smallexample
  704. @end cartouche
  705. @end deftypefun
  706. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  707. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  708. Compressed Sparse Row Representation) sparse matrix interface.
  709. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  710. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  711. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  712. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  713. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  714. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  715. or 1).
  716. @end deftypefun
  717. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  718. This variant of @code{starpu_data_register} uses the CSR (Compressed
  719. Sparse Row Representation) sparse matrix interface.
  720. TODO
  721. @end deftypefun
  722. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  723. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  724. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  725. elements of size @var{elemsize}. Initialize @var{handleptr}.
  726. @end deftypefun
  727. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  728. Return the interface associated with @var{handle} on @var{memory_node}.
  729. @end deftypefun
  730. @node Accessing Data Interfaces
  731. @subsection Accessing Data Interfaces
  732. Each data interface is provided with a set of field access functions.
  733. The ones using a @code{void *} parameter aimed to be used in codelet
  734. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  735. @deftp {Data Type} {enum starpu_data_interface_id}
  736. The different values are:
  737. @table @asis
  738. @item @code{STARPU_MATRIX_INTERFACE_ID}
  739. @item @code{STARPU_BLOCK_INTERFACE_ID}
  740. @item @code{STARPU_VECTOR_INTERFACE_ID}
  741. @item @code{STARPU_CSR_INTERFACE_ID}
  742. @item @code{STARPU_BCSR_INTERFACE_ID}
  743. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  744. @item @code{STARPU_VOID_INTERFACE_ID}
  745. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  746. @item @code{STARPU_COO_INTERCACE_ID}
  747. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  748. @end table
  749. @end deftp
  750. @menu
  751. * Accessing Handle::
  752. * Accessing Variable Data Interfaces::
  753. * Accessing Vector Data Interfaces::
  754. * Accessing Matrix Data Interfaces::
  755. * Accessing Block Data Interfaces::
  756. * Accessing BCSR Data Interfaces::
  757. * Accessing CSR Data Interfaces::
  758. * Accessing COO Data Interfaces::
  759. @end menu
  760. @node Accessing Handle
  761. @subsubsection Handle
  762. @deftypefun {void *} starpu_data_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  763. Return the pointer associated with @var{handle} on node @var{node} or
  764. @code{NULL} if @var{handle}'s interface does not support this
  765. operation or data for this handle is not allocated on that node.
  766. @end deftypefun
  767. @deftypefun {void *} starpu_data_get_local_ptr (starpu_data_handle_t @var{handle})
  768. Return the local pointer associated with @var{handle} or @code{NULL}
  769. if @var{handle}'s interface does not have data allocated locally
  770. @end deftypefun
  771. @deftypefun {enum starpu_data_interface_id} starpu_data_get_interface_id (starpu_data_handle_t @var{handle})
  772. Return the unique identifier of the interface associated with the given @var{handle}.
  773. @end deftypefun
  774. @deftypefun size_t starpu_data_get_size (starpu_data_handle_t @var{handle})
  775. Return the size of the data associated with @var{handle}
  776. @end deftypefun
  777. @deftypefun int starpu_data_pack (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {starpu_ssize_t *}@var{count})
  778. Execute the packing operation of the interface of the data registered
  779. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  780. packing operation must allocate a buffer large enough at @var{ptr} and
  781. copy into the newly allocated buffer the data associated to
  782. @var{handle}. @var{count} will be set to the size of the allocated
  783. buffer.
  784. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  785. buffer but just set @var{count} to the size of the buffer which
  786. would have been allocated. The special value @code{-1} indicates the
  787. size is yet unknown.
  788. @end deftypefun
  789. @deftypefun int starpu_data_unpack (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  790. Unpack in @var{handle} the data located at @var{ptr} of size
  791. @var{count} as described by the interface of the data. The interface
  792. registered at @var{handle} must define a unpacking operation
  793. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  794. is freed after calling the data unpacking operation.
  795. @end deftypefun
  796. @node Accessing Variable Data Interfaces
  797. @subsubsection Variable Data Interfaces
  798. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  799. Return the size of the variable designated by @var{handle}.
  800. @end deftypefun
  801. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  802. Return a pointer to the variable designated by @var{handle}.
  803. @end deftypefun
  804. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  805. Return a pointer to the variable designated by @var{interface}.
  806. @end defmac
  807. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  808. Return the size of the variable designated by @var{interface}.
  809. @end defmac
  810. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  811. Return a device handle for the variable designated by @var{interface}, to be
  812. used on OpenCL. The offset documented below has to be used in addition to this.
  813. @end defmac
  814. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  815. Return the offset in the variable designated by @var{interface}, to be used
  816. with the device handle.
  817. @end defmac
  818. @node Accessing Vector Data Interfaces
  819. @subsubsection Vector Data Interfaces
  820. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  821. Return the number of elements registered into the array designated by @var{handle}.
  822. @end deftypefun
  823. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  824. Return the size of each element of the array designated by @var{handle}.
  825. @end deftypefun
  826. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  827. Return the local pointer associated with @var{handle}.
  828. @end deftypefun
  829. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  830. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  831. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  832. @end defmac
  833. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  834. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  835. documented below has to be used in addition to this.
  836. @end defmac
  837. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  838. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  839. @end defmac
  840. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  841. Return the number of elements registered into the array designated by @var{interface}.
  842. @end defmac
  843. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  844. Return the size of each element of the array designated by @var{interface}.
  845. @end defmac
  846. @node Accessing Matrix Data Interfaces
  847. @subsubsection Matrix Data Interfaces
  848. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  849. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  850. @end deftypefun
  851. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  852. Return the number of elements on the y-axis of the matrix designated by
  853. @var{handle}.
  854. @end deftypefun
  855. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  856. Return the number of elements between each row of the matrix designated by
  857. @var{handle}. Maybe be equal to nx when there is no padding.
  858. @end deftypefun
  859. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  860. Return the local pointer associated with @var{handle}.
  861. @end deftypefun
  862. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  863. Return the size of the elements registered into the matrix designated by
  864. @var{handle}.
  865. @end deftypefun
  866. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  867. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  868. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  869. used instead.
  870. @end defmac
  871. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  872. Return a device handle for the matrix designated by @var{interface}, to be used
  873. on OpenCL. The offset documented below has to be used in addition to this.
  874. @end defmac
  875. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  876. Return the offset in the matrix designated by @var{interface}, to be used with
  877. the device handle.
  878. @end defmac
  879. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  880. Return the number of elements on the x-axis of the matrix designated by
  881. @var{interface}.
  882. @end defmac
  883. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  884. Return the number of elements on the y-axis of the matrix designated by
  885. @var{interface}.
  886. @end defmac
  887. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  888. Return the number of elements between each row of the matrix designated by
  889. @var{interface}. May be equal to nx when there is no padding.
  890. @end defmac
  891. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  892. Return the size of the elements registered into the matrix designated by
  893. @var{interface}.
  894. @end defmac
  895. @node Accessing Block Data Interfaces
  896. @subsubsection Block Data Interfaces
  897. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  898. Return the number of elements on the x-axis of the block designated by @var{handle}.
  899. @end deftypefun
  900. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  901. Return the number of elements on the y-axis of the block designated by @var{handle}.
  902. @end deftypefun
  903. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  904. Return the number of elements on the z-axis of the block designated by @var{handle}.
  905. @end deftypefun
  906. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  907. Return the number of elements between each row of the block designated by
  908. @var{handle}, in the format of the current memory node.
  909. @end deftypefun
  910. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  911. Return the number of elements between each z plane of the block designated by
  912. @var{handle}, in the format of the current memory node.
  913. @end deftypefun
  914. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  915. Return the local pointer associated with @var{handle}.
  916. @end deftypefun
  917. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  918. Return the size of the elements of the block designated by @var{handle}.
  919. @end deftypefun
  920. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  921. Return a pointer to the block designated by @var{interface}.
  922. @end defmac
  923. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  924. Return a device handle for the block designated by @var{interface}, to be used
  925. on OpenCL. The offset document below has to be used in addition to this.
  926. @end defmac
  927. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  928. Return the offset in the block designated by @var{interface}, to be used with
  929. the device handle.
  930. @end defmac
  931. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  932. Return the number of elements on the x-axis of the block designated by @var{handle}.
  933. @end defmac
  934. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  935. Return the number of elements on the y-axis of the block designated by @var{handle}.
  936. @end defmac
  937. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  938. Return the number of elements on the z-axis of the block designated by @var{handle}.
  939. @end defmac
  940. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  941. Return the number of elements between each row of the block designated by
  942. @var{interface}. May be equal to nx when there is no padding.
  943. @end defmac
  944. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  945. Return the number of elements between each z plane of the block designated by
  946. @var{interface}. May be equal to nx*ny when there is no padding.
  947. @end defmac
  948. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  949. Return the size of the elements of the matrix designated by @var{interface}.
  950. @end defmac
  951. @node Accessing BCSR Data Interfaces
  952. @subsubsection BCSR Data Interfaces
  953. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  954. Return the number of non-zero elements in the matrix designated by @var{handle}.
  955. @end deftypefun
  956. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  957. Return the number of rows (in terms of blocks of size r*c) in the matrix
  958. designated by @var{handle}.
  959. @end deftypefun
  960. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  961. Return the index at which all arrays (the column indexes, the row pointers...)
  962. of the matrix desginated by @var{handle} start.
  963. @end deftypefun
  964. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  965. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  966. @end deftypefun
  967. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  968. Return a pointer to the column index, which holds the positions of the non-zero
  969. entries in the matrix designated by @var{handle}.
  970. @end deftypefun
  971. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  972. Return the row pointer array of the matrix designated by @var{handle}.
  973. @end deftypefun
  974. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  975. Return the number of rows in a block.
  976. @end deftypefun
  977. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  978. Return the numberof columns in a block.
  979. @end deftypefun
  980. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  981. Return the size of the elements in the matrix designated by @var{handle}.
  982. @end deftypefun
  983. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  984. Return the number of non-zero values in the matrix designated by @var{interface}.
  985. @end defmac
  986. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  987. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  988. @end defmac
  989. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  990. Return a device handle for the array of non-zero values in the matrix designated
  991. by @var{interface}. The offset documented below has to be used in addition to
  992. this.
  993. @end defmac
  994. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  995. Return a pointer to the column index of the matrix designated by @var{interface}.
  996. @end defmac
  997. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  998. Return a device handle for the column index of the matrix designated by
  999. @var{interface}. The offset documented below has to be used in addition to
  1000. this.
  1001. @end defmac
  1002. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  1003. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  1004. @end defmac
  1005. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  1006. Return a device handle for the row pointer array of the matrix designated by
  1007. @var{interface}. The offset documented below has to be used in addition to
  1008. this.
  1009. @end defmac
  1010. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  1011. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  1012. designated by @var{interface}, to be used with the device handles.
  1013. @end defmac
  1014. @node Accessing CSR Data Interfaces
  1015. @subsubsection CSR Data Interfaces
  1016. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  1017. Return the number of non-zero values in the matrix designated by @var{handle}.
  1018. @end deftypefun
  1019. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  1020. Return the size of the row pointer array of the matrix designated by @var{handle}.
  1021. @end deftypefun
  1022. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  1023. Return the index at which all arrays (the column indexes, the row pointers...)
  1024. of the matrix designated by @var{handle} start.
  1025. @end deftypefun
  1026. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  1027. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  1028. @end deftypefun
  1029. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  1030. Return a local pointer to the column index of the matrix designated by @var{handle}.
  1031. @end deftypefun
  1032. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  1033. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  1034. @end deftypefun
  1035. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  1036. Return the size of the elements registered into the matrix designated by @var{handle}.
  1037. @end deftypefun
  1038. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  1039. Return the number of non-zero values in the matrix designated by @var{interface}.
  1040. @end defmac
  1041. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  1042. Return the size of the row pointer array of the matrix designated by @var{interface}.
  1043. @end defmac
  1044. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  1045. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  1046. @end defmac
  1047. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  1048. Return a device handle for the array of non-zero values in the matrix designated
  1049. by @var{interface}. The offset documented below has to be used in addition to
  1050. this.
  1051. @end defmac
  1052. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  1053. Return a pointer to the column index of the matrix designated by @var{interface}.
  1054. @end defmac
  1055. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  1056. Return a device handle for the column index of the matrix designated by
  1057. @var{interface}. The offset documented below has to be used in addition to
  1058. this.
  1059. @end defmac
  1060. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  1061. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  1062. @end defmac
  1063. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  1064. Return a device handle for the row pointer array of the matrix designated by
  1065. @var{interface}. The offset documented below has to be used in addition to
  1066. this.
  1067. @end defmac
  1068. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  1069. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  1070. designated by @var{interface}, to be used with the device handles.
  1071. @end defmac
  1072. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  1073. Return the index at which all arrays (the column indexes, the row pointers...)
  1074. of the @var{interface} start.
  1075. @end defmac
  1076. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  1077. Return the size of the elements registered into the matrix designated by @var{interface}.
  1078. @end defmac
  1079. @node Accessing COO Data Interfaces
  1080. @subsubsection COO Data Interfaces
  1081. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  1082. Return a pointer to the column array of the matrix designated by
  1083. @var{interface}.
  1084. @end defmac
  1085. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1086. Return a device handle for the column array of the matrix designated by
  1087. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1088. used in addition to this.
  1089. @end defmac
  1090. @defmac STARPU_COO_GET_ROWS (interface)
  1091. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1092. @end defmac
  1093. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1094. Return a device handle for the row array of the matrix designated by
  1095. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1096. used in addition to this.
  1097. @end defmac
  1098. @defmac STARPU_COO_GET_VALUES (interface)
  1099. Return a pointer to the values array of the matrix designated by
  1100. @var{interface}.
  1101. @end defmac
  1102. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1103. Return a device handle for the value array of the matrix designated by
  1104. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1105. used in addition to this.
  1106. @end defmac
  1107. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1108. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1109. @end defmac
  1110. @defmac STARPU_COO_GET_NX (interface)
  1111. Return the number of elements on the x-axis of the matrix designated by
  1112. @var{interface}.
  1113. @end defmac
  1114. @defmac STARPU_COO_GET_NY (interface)
  1115. Return the number of elements on the y-axis of the matrix designated by
  1116. @var{interface}.
  1117. @end defmac
  1118. @defmac STARPU_COO_GET_NVALUES (interface)
  1119. Return the number of values registered in the matrix designated by
  1120. @var{interface}.
  1121. @end defmac
  1122. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1123. Return the size of the elements registered into the matrix designated by
  1124. @var{interface}.
  1125. @end defmac
  1126. @node Defining Interface
  1127. @subsection Defining Interface
  1128. Applications can provide their own interface as shown in
  1129. @pxref{Defining a New Data Interface}.
  1130. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1131. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1132. failed, the allocation method should then return -ENOMEM as allocated size.
  1133. @end deftypefun
  1134. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1135. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1136. @end deftypefun
  1137. @deftp {Data Type} {struct starpu_data_interface_ops}
  1138. @anchor{struct starpu_data_interface_ops}
  1139. Per-interface data transfer methods.
  1140. @table @asis
  1141. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, unsigned home_node, void *data_interface)}
  1142. Register an existing interface into a data handle.
  1143. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, unsigned node)}
  1144. Allocate data for the interface on a given node.
  1145. @item @code{ void (*free_data_on_node)(void *data_interface, unsigned node)}
  1146. Free data of the interface on a given node.
  1147. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  1148. ram/cuda/opencl synchronous and asynchronous transfer methods.
  1149. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, unsigned node)}
  1150. Return the current pointer (if any) for the handle on the given node.
  1151. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  1152. Return an estimation of the size of data, for performance models.
  1153. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  1154. Return a 32bit footprint which characterizes the data size.
  1155. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  1156. Compare the data size of two interfaces.
  1157. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  1158. Dump the sizes of a handle to a file.
  1159. @item @code{enum starpu_data_interface_id interfaceid}
  1160. An identifier that is unique to each interface.
  1161. @item @code{size_t interface_size}
  1162. The size of the interface data descriptor.
  1163. @item @code{int is_multiformat}
  1164. todo
  1165. @item @code{struct starpu_multiformat_data_interface_ops* (*get_mf_ops)(void *data_interface)}
  1166. todo
  1167. @item @code{int (*pack_data)(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)}
  1168. Pack the data handle into a contiguous buffer at the address
  1169. @code{ptr} and set the size of the newly created buffer in
  1170. @code{count}. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  1171. buffer but just set @var{count} to the size of the buffer which
  1172. would have been allocated. The special value @code{-1} indicates the
  1173. size is yet unknown.
  1174. @item @code{int (*unpack_data)(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)}
  1175. Unpack the data handle from the contiguous buffer at the address @code{ptr} of size @var{count}
  1176. @end table
  1177. @end deftp
  1178. @deftp {Data Type} {struct starpu_data_copy_methods}
  1179. Defines the per-interface methods. If the @code{any_to_any} method is provided,
  1180. it will be used by default if no more specific method is provided. It can still
  1181. be useful to provide more specific method in case of e.g. available particular
  1182. CUDA or OpenCL support.
  1183. @table @asis
  1184. @item @code{int (*@{ram,cuda,opencl,mic@}_to_@{ram,cuda,opencl,mic@})(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1185. These 14 functions define how to copy data from the @var{src_interface}
  1186. interface on the @var{src_node} node to the @var{dst_interface} interface
  1187. on the @var{dst_node} node. They return 0 on success.
  1188. @item @code{int (*@{ram,cuda@}_to_@{ram,cuda@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  1189. These 3 functions (@code{ram_to_ram} is not among these) define how to copy
  1190. data from the @var{src_interface} interface on the @var{src_node} node to the
  1191. @var{dst_interface} interface on the @var{dst_node} node, using the given
  1192. @var{stream}. Must return 0 if the transfer was actually completed completely
  1193. synchronously, or -EAGAIN if at least some transfers are still ongoing and
  1194. should be awaited for by the core.
  1195. @item @code{int (*@{ram,opencl@}_to_@{ram,opencl@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  1196. These 3 functions (@code{ram_to_ram} is not among them) define how to copy
  1197. data from the @var{src_interface} interface on the @var{src_node} node to the
  1198. @var{dst_interface} interface on the @var{dst_node} node, by recording in
  1199. @var{event}, a pointer to a cl_event, the event of the last submitted transfer.
  1200. Must return 0 if the transfer was actually completed completely synchronously,
  1201. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1202. for by the core.
  1203. @item @code{int (*@{ram,mic@}_to_@{ram,mic@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1204. These 2 functions (@code{ram_to_ram} and @code{mic_to_mic} are not among them) define how to copy
  1205. data from the @var{src_interface} interface on the @var{src_node} node to the
  1206. @var{dst_interface} interface on the @var{dst_node} node.
  1207. Must return 0 if the transfer was actually completed completely synchronously,
  1208. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1209. for by the core.
  1210. @item @code{int (*@{src,sink@}_to_@{src,sink@}_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  1211. These 3 functions (@code{src_to_src} is not among them) define how to copy
  1212. data from the @var{src_interface} interface on the @var{src_node} node to the
  1213. @var{dst_interface} interface on the @var{dst_node} node.
  1214. Must return 0 if the transfer was actually completed completely synchronously,
  1215. or -EAGAIN if at least some transfers are still ongoing and should be awaited
  1216. for by the core.
  1217. @item @code{int (*any_to_any)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, void *async_data)}
  1218. Define how to copy data from the @var{src_interface} interface on the
  1219. @var{src_node} node to the @var{dst_interface} interface on the @var{dst_node}
  1220. node. This is meant to be implemented through the @var{starpu_interface_copy}
  1221. helper, to which @var{async_data} should be passed as such, and will be used to
  1222. manage asynchronicity. This must return -EAGAIN if any of the
  1223. @var{starpu_interface_copy} calls has returned -EAGAIN (i.e. at least some
  1224. transfer is still ongoing), and return 0 otherwise.
  1225. @end table
  1226. @end deftp
  1227. @deftypefun int starpu_interface_copy (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {void *}@var{async_data})
  1228. Copy @var{size} bytes from byte offset @var{src_offset} of @var{src} on
  1229. @var{src_node} to byte offset @var{dst_offset} of @var{dst} on @var{dst_node}.
  1230. This is to be used in the @var{any_to_any} copy method, which is provided with
  1231. the @var{async_data} to be pased to @var{starpu_interface_copy}. this returns
  1232. -EAGAIN if the transfer is still ongoing, or 0 if the transfer is already
  1233. completed.
  1234. @end deftypefun
  1235. @deftypefun uint32_t starpu_hash_crc32c_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  1236. Compute the CRC of a byte buffer seeded by the inputcrc "current
  1237. state". The return value should be considered as the new "current
  1238. state" for future CRC computation. This is used for computing data size
  1239. footprint.
  1240. @end deftypefun
  1241. @deftypefun uint32_t starpu_hash_crc32c_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  1242. Compute the CRC of a 32bit number seeded by the inputcrc "current
  1243. state". The return value should be considered as the new "current
  1244. state" for future CRC computation. This is used for computing data size
  1245. footprint.
  1246. @end deftypefun
  1247. @deftypefun uint32_t starpu_hash_crc32c_string ({char *}@var{str}, uint32_t @var{inputcrc})
  1248. Compute the CRC of a string seeded by the inputcrc "current state".
  1249. The return value should be considered as the new "current state" for
  1250. future CRC computation. This is used for computing data size footprint.
  1251. @end deftypefun
  1252. @deftypefun int starpu_data_interface_get_next_id (void)
  1253. Returns the next available id for a newly created data interface
  1254. (@pxref{Defining a New Data Interface}).
  1255. @end deftypefun
  1256. @node Data Partition
  1257. @section Data Partition
  1258. @menu
  1259. * Basic API::
  1260. * Predefined filter functions::
  1261. @end menu
  1262. @node Basic API
  1263. @subsection Basic API
  1264. @deftp {Data Type} {struct starpu_data_filter}
  1265. The filter structure describes a data partitioning operation, to be given to the
  1266. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1267. for an example. The different fields are:
  1268. @table @asis
  1269. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1270. This function fills the @code{child_interface} structure with interface
  1271. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1272. @item @code{unsigned nchildren}
  1273. This is the number of parts to partition the data into.
  1274. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1275. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1276. children depends on the actual data (e.g. the number of blocks in a sparse
  1277. matrix).
  1278. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1279. In case the resulting children use a different data interface, this function
  1280. returns which interface is used by child number @code{id}.
  1281. @item @code{unsigned filter_arg}
  1282. Allow to define an additional parameter for the filter function.
  1283. @item @code{void *filter_arg_ptr}
  1284. Allow to define an additional pointer parameter for the filter
  1285. function, such as the sizes of the different parts.
  1286. @end table
  1287. @end deftp
  1288. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1289. @anchor{starpu_data_partition}
  1290. This requests partitioning one StarPU data @var{initial_handle} into several
  1291. subdata according to the filter @var{f}, as shown in the following example:
  1292. @cartouche
  1293. @smallexample
  1294. struct starpu_data_filter f = @{
  1295. .filter_func = starpu_matrix_filter_block,
  1296. .nchildren = nslicesx,
  1297. .get_nchildren = NULL,
  1298. .get_child_ops = NULL
  1299. @};
  1300. starpu_data_partition(A_handle, &f);
  1301. @end smallexample
  1302. @end cartouche
  1303. @end deftypefun
  1304. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1305. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1306. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1307. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1308. @cartouche
  1309. @smallexample
  1310. starpu_data_unpartition(A_handle, 0);
  1311. @end smallexample
  1312. @end cartouche
  1313. @end deftypefun
  1314. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1315. This function returns the number of children.
  1316. @end deftypefun
  1317. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1318. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1319. @end deftypefun
  1320. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1321. After partitioning a StarPU data by applying a filter,
  1322. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1323. the data portions. @var{root_data} is the parent data that was
  1324. partitioned. @var{depth} is the number of filters to traverse (in
  1325. case several filters have been applied, to e.g. partition in row
  1326. blocks, and then in column blocks), and the subsequent
  1327. parameters are the indexes. The function returns a handle to the
  1328. subdata.
  1329. @cartouche
  1330. @smallexample
  1331. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1332. @end smallexample
  1333. @end cartouche
  1334. @end deftypefun
  1335. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1336. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1337. va_list for the parameter list.
  1338. @end deftypefun
  1339. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1340. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1341. recursively. @var{nfilters} pointers to variables of the type
  1342. starpu_data_filter should be given.
  1343. @end deftypefun
  1344. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1345. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1346. recursively. It uses a va_list of pointers to variables of the typer
  1347. starpu_data_filter.
  1348. @end deftypefun
  1349. @node Predefined filter functions
  1350. @subsection Predefined filter functions
  1351. @menu
  1352. * Partitioning Vector Data::
  1353. * Partitioning Matrix Data::
  1354. * Partitioning 3D Matrix Data::
  1355. * Partitioning BCSR Data::
  1356. @end menu
  1357. This section gives a partial list of the predefined partitioning functions.
  1358. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1359. list can be found in @code{starpu_data_filters.h} .
  1360. @node Partitioning Vector Data
  1361. @subsubsection Partitioning Vector Data
  1362. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1363. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1364. vector represented by @var{father_interface} once partitioned in
  1365. @var{nparts} chunks of equal size.
  1366. @end deftypefun
  1367. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1368. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1369. vector represented by @var{father_interface} once partitioned in
  1370. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1371. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1372. IMPORTANT: This can only be used for read-only access, as no coherency is
  1373. enforced for the shadowed parts.
  1374. A usage example is available in examples/filters/shadow.c
  1375. @end deftypefun
  1376. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1377. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1378. vector represented by @var{father_interface} once partitioned into
  1379. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1380. @code{*@var{f}}.
  1381. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1382. @code{uint32_t} elements, each of which specifies the number of elements
  1383. in each chunk of the partition.
  1384. @end deftypefun
  1385. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1386. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1387. vector represented by @var{father_interface} once partitioned in two
  1388. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1389. @code{0} or @code{1}.
  1390. @end deftypefun
  1391. @node Partitioning Matrix Data
  1392. @subsubsection Partitioning Matrix Data
  1393. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1394. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1395. matrices. If nparts does not divide x, the last submatrix contains the
  1396. remainder.
  1397. @end deftypefun
  1398. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1399. This partitions a dense Matrix along the x dimension, with a shadow border
  1400. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1401. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1402. remainder.
  1403. IMPORTANT: This can only be used for read-only access, as no coherency is
  1404. enforced for the shadowed parts.
  1405. A usage example is available in examples/filters/shadow2d.c
  1406. @end deftypefun
  1407. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1408. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1409. matrices. If nparts does not divide y, the last submatrix contains the
  1410. remainder.
  1411. @end deftypefun
  1412. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1413. This partitions a dense Matrix along the y dimension, with a shadow border
  1414. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1415. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1416. remainder.
  1417. IMPORTANT: This can only be used for read-only access, as no coherency is
  1418. enforced for the shadowed parts.
  1419. A usage example is available in examples/filters/shadow2d.c
  1420. @end deftypefun
  1421. @node Partitioning 3D Matrix Data
  1422. @subsubsection Partitioning 3D Matrix Data
  1423. A usage example is available in examples/filters/shadow3d.c
  1424. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1425. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1426. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1427. remainder.
  1428. @end deftypefun
  1429. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1430. This partitions a 3D matrix along the X dimension, with a shadow border
  1431. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1432. matrices. If nparts does not divide x, the last submatrix contains the
  1433. remainder.
  1434. IMPORTANT: This can only be used for read-only access, as no coherency is
  1435. enforced for the shadowed parts.
  1436. @end deftypefun
  1437. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1438. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1439. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1440. remainder.
  1441. @end deftypefun
  1442. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1443. This partitions a 3D matrix along the Y dimension, with a shadow border
  1444. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1445. matrices. If nparts does not divide y, the last submatrix contains the
  1446. remainder.
  1447. IMPORTANT: This can only be used for read-only access, as no coherency is
  1448. enforced for the shadowed parts.
  1449. @end deftypefun
  1450. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1451. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1452. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1453. remainder.
  1454. @end deftypefun
  1455. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1456. This partitions a 3D matrix along the Z dimension, with a shadow border
  1457. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1458. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1459. remainder.
  1460. IMPORTANT: This can only be used for read-only access, as no coherency is
  1461. enforced for the shadowed parts.
  1462. @end deftypefun
  1463. @node Partitioning BCSR Data
  1464. @subsubsection Partitioning BCSR Data
  1465. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1466. This partitions a block-sparse matrix into dense matrices.
  1467. @end deftypefun
  1468. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1469. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1470. @end deftypefun
  1471. @node Multiformat Data Interface
  1472. @section Multiformat Data Interface
  1473. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  1474. The different fields are:
  1475. @table @asis
  1476. @item @code{size_t cpu_elemsize}
  1477. the size of each element on CPUs,
  1478. @item @code{size_t opencl_elemsize}
  1479. the size of each element on OpenCL devices,
  1480. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  1481. pointer to a codelet which converts from CPU to OpenCL
  1482. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  1483. pointer to a codelet which converts from OpenCL to CPU
  1484. @item @code{size_t cuda_elemsize}
  1485. the size of each element on CUDA devices,
  1486. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  1487. pointer to a codelet which converts from CPU to CUDA
  1488. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  1489. pointer to a codelet which converts from CUDA to CPU
  1490. @item @code{size_t mic_elemsize}
  1491. the size of each element on MIC devices,
  1492. @item @code{struct starpu_codelet *cpu_to_mic_cl}
  1493. pointer to a codelet which converts from CPU to MIC
  1494. @item @code{struct starpu_codelet *mic_to_cpu_cl}
  1495. pointer to a codelet which converts from MIC to CPU
  1496. @item @code{size_t scc_elemsize}
  1497. the size of each element on SCC devices,
  1498. @item @code{struct starpu_codelet *cpu_to_scc_cl}
  1499. pointer to a codelet which converts from CPU to SCC
  1500. @item @code{struct starpu_codelet *scc_to_cpu_cl}
  1501. pointer to a codelet which converts from SCC to CPU
  1502. @end table
  1503. @end deftp
  1504. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  1505. Register a piece of data that can be represented in different ways, depending upon
  1506. the processing unit that manipulates it. It allows the programmer, for instance, to
  1507. use an array of structures when working on a CPU, and a structure of arrays when
  1508. working on a GPU.
  1509. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  1510. the format.
  1511. @end deftypefun
  1512. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  1513. returns the local pointer to the data with CPU format.
  1514. @end defmac
  1515. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  1516. returns the local pointer to the data with CUDA format.
  1517. @end defmac
  1518. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  1519. returns the local pointer to the data with OpenCL format.
  1520. @end defmac
  1521. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  1522. returns the number of elements in the data.
  1523. @end defmac
  1524. @node Codelets and Tasks
  1525. @section Codelets and Tasks
  1526. This section describes the interface to manipulate codelets and tasks.
  1527. @deftp {Data Type} {enum starpu_codelet_type}
  1528. Describes the type of parallel task. The different values are:
  1529. @table @asis
  1530. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1531. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1532. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1533. @code{starpu_combined_worker_get_rank} to distribute the work
  1534. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1535. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1536. determine how many threads should be started.
  1537. @end table
  1538. See @ref{Parallel Tasks} for details.
  1539. @end deftp
  1540. @defmac STARPU_CPU
  1541. This macro is used when setting the field @code{where} of a @code{struct
  1542. starpu_codelet} to specify the codelet may be executed on a CPU
  1543. processing unit.
  1544. @end defmac
  1545. @defmac STARPU_CUDA
  1546. This macro is used when setting the field @code{where} of a @code{struct
  1547. starpu_codelet} to specify the codelet may be executed on a CUDA
  1548. processing unit.
  1549. @end defmac
  1550. @defmac STARPU_OPENCL
  1551. This macro is used when setting the field @code{where} of a @code{struct
  1552. starpu_codelet} to specify the codelet may be executed on an OpenCL
  1553. processing unit.
  1554. @end defmac
  1555. @defmac STARPU_MIC
  1556. This macro is used when setting the field @code{where} of a @code{struct
  1557. starpu_codelet} to specify the codelet may be executed on a MIC
  1558. processing unit.
  1559. @end defmac
  1560. @defmac STARPU_SCC
  1561. This macro is used when setting the field @code{where} of a @code{struct
  1562. starpu_codelet} to specify the codelet may be executed on an SCC
  1563. processing unit.
  1564. @end defmac
  1565. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1566. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1567. with this macro indicates the codelet will have several
  1568. implementations. The use of this macro is deprecated. One should
  1569. always only define the field @code{cpu_funcs}.
  1570. @end defmac
  1571. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1572. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1573. with this macro indicates the codelet will have several
  1574. implementations. The use of this macro is deprecated. One should
  1575. always only define the field @code{cuda_funcs}.
  1576. @end defmac
  1577. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1578. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1579. with this macro indicates the codelet will have several
  1580. implementations. The use of this macro is deprecated. One should
  1581. always only define the field @code{opencl_funcs}.
  1582. @end defmac
  1583. @deftp {Data Type} {struct starpu_codelet}
  1584. The codelet structure describes a kernel that is possibly implemented on various
  1585. targets. For compatibility, make sure to initialize the whole structure to zero,
  1586. either by using explicit memset, or by letting the compiler implicitly do it in
  1587. e.g. static storage case.
  1588. @table @asis
  1589. @item @code{uint32_t where} (optional)
  1590. Indicates which types of processing units are able to execute the
  1591. codelet. The different values
  1592. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1593. @code{STARPU_OPENCL} can be combined to specify
  1594. on which types of processing units the codelet can be executed.
  1595. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1596. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1597. indicates that it is only available on OpenCL devices. If the field is
  1598. unset, its value will be automatically set based on the availability
  1599. of the @code{XXX_funcs} fields defined below.
  1600. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1601. Defines a function which should return 1 if the worker designated by
  1602. @var{workerid} can execute the @var{nimpl}th implementation of the
  1603. given @var{task}, 0 otherwise.
  1604. @item @code{enum starpu_codelet_type type} (optional)
  1605. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1606. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1607. implementation is also available. See @ref{Parallel Tasks} for details.
  1608. @item @code{int max_parallelism} (optional)
  1609. If a parallel implementation is available, this denotes the maximum combined
  1610. worker size that StarPU will use to execute parallel tasks for this codelet.
  1611. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1612. This field has been made deprecated. One should use instead the
  1613. @code{cpu_funcs} field.
  1614. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1615. Is an array of function pointers to the CPU implementations of the codelet.
  1616. It must be terminated by a NULL value.
  1617. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1618. argument being the array of data managed by the data management library, and
  1619. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1620. field of the @code{starpu_task} structure.
  1621. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1622. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1623. field, it must be non-null otherwise.
  1624. @item @code{char * cpu_funcs_name[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1625. Is an array of strings which provide the name of the CPU functions referenced in
  1626. the @code{cpu_funcs} array. This can be used when running on MIC devices or the
  1627. SCC platform, for StarPU to simply look up the MIC function implementation
  1628. through its name.
  1629. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1630. This field has been made deprecated. One should use instead the
  1631. @code{cuda_funcs} field.
  1632. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1633. Is an array of function pointers to the CUDA implementations of the codelet.
  1634. It must be terminated by a NULL value.
  1635. @emph{The functions must be host-functions written in the CUDA runtime
  1636. API}. Their prototype must
  1637. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1638. If the @code{where} field is set, then the @code{cuda_funcs}
  1639. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1640. field, it must be non-null otherwise.
  1641. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1642. This field has been made deprecated. One should use instead the
  1643. @code{opencl_funcs} field.
  1644. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1645. Is an array of function pointers to the OpenCL implementations of the codelet.
  1646. It must be terminated by a NULL value.
  1647. The functions prototype must be:
  1648. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1649. If the @code{where} field is set, then the @code{opencl_funcs} field
  1650. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1651. field, it must be non-null otherwise.
  1652. @item @code{starpu_mic_func_t mic_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1653. Is an array of function pointers to a function which returns the MIC
  1654. implementation of the codelet.
  1655. It must be terminated by a NULL value.
  1656. The functions prototype must be:
  1657. @code{starpu_mic_kernel_t mic_func(struct starpu_codelet *cl, unsigned nimpl);}.
  1658. If the @code{where} field is set, then the @code{mic_funcs} field
  1659. is ignored if @code{STARPU_MIC} does not appear in the @code{where}
  1660. field. It can be null if @code{cpu_funcs_name} is non-NULL, in which case StarPU
  1661. will simply make a symbol lookup to get the implementation.
  1662. @item @code{starpu_scc_func_t scc_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1663. Is an array of function pointers to a function which returns the SCC
  1664. implementation of the codelet.
  1665. It must be terminated by a NULL value.
  1666. The functions prototype must be:
  1667. @code{starpu_scc_kernel_t scc_func(struct starpu_codelet *cl, unsigned nimpl);}.
  1668. If the @code{where} field is set, then the @code{scc_funcs} field
  1669. is ignored if @code{STARPU_SCC} does not appear in the @code{where}
  1670. field. It can be null if @code{cpu_funcs_name} is non-NULL, in which case StarPU
  1671. will simply make a symbol lookup to get the implementation.
  1672. @item @code{unsigned nbuffers}
  1673. Specifies the number of arguments taken by the codelet. These arguments are
  1674. managed by the DSM and are accessed from the @code{void *buffers[]}
  1675. array. The constant argument passed with the @code{cl_arg} field of the
  1676. @code{starpu_task} structure is not counted in this number. This value should
  1677. not be above @code{STARPU_NMAXBUFS}.
  1678. @item @code{enum starpu_data_access_mode modes[STARPU_NMAXBUFS]}
  1679. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1680. required access modes to the data neeeded by the codelet (e.g.
  1681. @code{STARPU_RW}). The number of entries in this array must be
  1682. specified in the @code{nbuffers} field (defined above), and should not
  1683. exceed @code{STARPU_NMAXBUFS}.
  1684. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1685. option when configuring StarPU.
  1686. @item @code{enum starpu_data_access_mode *dyn_modes}
  1687. Is an array of @code{enum starpu_data_access_mode}. It describes the
  1688. required access modes to the data neeeded by the codelet (e.g.
  1689. @code{STARPU_RW}). The number of entries in this array must be
  1690. specified in the @code{nbuffers} field (defined above).
  1691. This field should be used for codelets having a number of datas
  1692. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1693. for a Task}).
  1694. When defining a codelet, one should either define this field or the
  1695. field @code{modes} defined above.
  1696. @item @code{struct starpu_perfmodel *model} (optional)
  1697. This is a pointer to the task duration performance model associated to this
  1698. codelet. This optional field is ignored when set to @code{NULL} or
  1699. when its @code{symbol} field is not set.
  1700. @item @code{struct starpu_perfmodel *power_model} (optional)
  1701. This is a pointer to the task power consumption performance model associated
  1702. to this codelet. This optional field is ignored when set to
  1703. @code{NULL} or when its @code{symbol} field is not set.
  1704. In the case of parallel codelets, this has to account for all processing units
  1705. involved in the parallel execution.
  1706. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1707. Statistics collected at runtime: this is filled by StarPU and should not be
  1708. accessed directly, but for example by calling the
  1709. @code{starpu_codelet_display_stats} function (See
  1710. @ref{starpu_codelet_display_stats} for details).
  1711. @item @code{const char *name} (optional)
  1712. Define the name of the codelet. This can be useful for debugging purposes.
  1713. @end table
  1714. @end deftp
  1715. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1716. @anchor{starpu_codelet_init}
  1717. Initialize @var{cl} with default values. Codelets should preferably be
  1718. initialized statically as shown in @ref{Defining a Codelet}. However
  1719. such a initialisation is not always possible, e.g. when using C++.
  1720. @end deftypefun
  1721. @deftp {Data Type} {enum starpu_task_status}
  1722. State of a task, can be either of
  1723. @table @asis
  1724. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1725. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1726. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1727. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1728. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1729. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1730. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1731. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1732. @end table
  1733. @end deftp
  1734. @deftp {Data Type} {struct starpu_data_descr}
  1735. This type is used to describe a data handle along with an
  1736. access mode.
  1737. @table @asis
  1738. @item @code{starpu_data_handle_t handle} describes a data,
  1739. @item @code{enum starpu_data_access_mode mode} describes its access mode
  1740. @end table
  1741. @end deftp
  1742. @deftp {Data Type} {struct starpu_task}
  1743. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1744. processing units managed by StarPU. It instantiates a codelet. It can either be
  1745. allocated dynamically with the @code{starpu_task_create} method, or declared
  1746. statically. In the latter case, the programmer has to zero the
  1747. @code{starpu_task} structure and to fill the different fields properly. The
  1748. indicated default values correspond to the configuration of a task allocated
  1749. with @code{starpu_task_create}.
  1750. @table @asis
  1751. @item @code{struct starpu_codelet *cl}
  1752. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1753. describes where the kernel should be executed, and supplies the appropriate
  1754. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1755. such empty tasks can be useful for synchronization purposes.
  1756. @item @code{struct starpu_data_descr buffers[STARPU_NMAXBUFS]}
  1757. This field has been made deprecated. One should use instead the
  1758. @code{handles} field to specify the handles to the data accessed by
  1759. the task. The access modes are now defined in the @code{mode} field of
  1760. the @code{struct starpu_codelet cl} field defined above.
  1761. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1762. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1763. to the different pieces of data accessed by the task. The number
  1764. of entries in this array must be specified in the @code{nbuffers} field of the
  1765. @code{struct starpu_codelet} structure, and should not exceed
  1766. @code{STARPU_NMAXBUFS}.
  1767. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1768. option when configuring StarPU.
  1769. @item @code{starpu_data_handle_t *dyn_handles}
  1770. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1771. to the different pieces of data accessed by the task. The number
  1772. of entries in this array must be specified in the @code{nbuffers} field of the
  1773. @code{struct starpu_codelet} structure.
  1774. This field should be used for tasks having a number of datas
  1775. greater than @code{STARPU_NMAXBUFS} (@pxref{Setting the Data Handles
  1776. for a Task}).
  1777. When defining a task, one should either define this field or the
  1778. field @code{handles} defined above.
  1779. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1780. The actual data pointers to the memory node where execution will happen, managed
  1781. by the DSM.
  1782. @item @code{void **dyn_interfaces}
  1783. The actual data pointers to the memory node where execution will happen, managed
  1784. by the DSM. Is used when the field @code{dyn_handles} is defined.
  1785. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1786. This pointer is passed to the codelet through the second argument
  1787. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1788. @item @code{size_t cl_arg_size} (optional)
  1789. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1790. given to the driver function. A buffer of size @code{cl_arg_size}
  1791. needs to be allocated on the driver. This buffer is then filled with
  1792. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1793. this case, the argument given to the codelet is therefore not the
  1794. @code{cl_arg} pointer, but the address of the buffer in local store
  1795. (LS) instead.
  1796. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1797. @code{cl_arg} pointer is given as such.
  1798. @item @code{unsigned cl_arg_free} (optional)
  1799. In case @code{cl_arg} was allocated by the application through @code{malloc},
  1800. setting @code{cl_arg_free} to 1 makes StarPU automatically call
  1801. @code{free(cl_arg)} when destroying the task. This saves the user from
  1802. defining a callback just for that. This is mostly useful when targetting MIC or
  1803. SCC, where the codelet does not execute in the same memory space as the main
  1804. thread.
  1805. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1806. This is a function pointer of prototype @code{void (*f)(void *)} which
  1807. specifies a possible callback. If this pointer is non-null, the callback
  1808. function is executed @emph{on the host} after the execution of the task. Tasks
  1809. which depend on it might already be executing. The callback is passed the
  1810. value contained in the @code{callback_arg} field. No callback is executed if the
  1811. field is set to @code{NULL}.
  1812. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1813. This is the pointer passed to the callback function. This field is ignored if
  1814. the @code{callback_func} is set to @code{NULL}.
  1815. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1816. If set, this flag indicates that the task should be associated with the tag
  1817. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1818. with the task and to express task dependencies easily.
  1819. @item @code{starpu_tag_t tag_id}
  1820. This field contains the tag associated to the task if the @code{use_tag} field
  1821. was set, it is ignored otherwise.
  1822. @item @code{unsigned sequential_consistency}
  1823. If this flag is set (which is the default), sequential consistency is enforced
  1824. for the data parameters of this task for which sequential consistency is
  1825. enabled. Clearing this flag permits to disable sequential consistency for this
  1826. task, even if data have it enabled.
  1827. @item @code{unsigned synchronous}
  1828. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1829. returns only when the task has been executed (or if no worker is able to
  1830. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1831. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1832. This field indicates a level of priority for the task. This is an integer value
  1833. that must be set between the return values of the
  1834. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1835. and that of the @code{starpu_sched_get_max_priority} for the most important
  1836. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1837. are provided for convenience and respectively returns value of
  1838. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1839. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1840. order to allow static task initialization. Scheduling strategies that take
  1841. priorities into account can use this parameter to take better scheduling
  1842. decisions, but the scheduling policy may also ignore it.
  1843. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1844. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1845. task to the worker specified by the @code{workerid} field.
  1846. @item @code{unsigned workerid} (optional)
  1847. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1848. which is the identifier of the worker that should process this task (as
  1849. returned by @code{starpu_worker_get_id}). This field is ignored if
  1850. @code{execute_on_a_specific_worker} field is set to 0.
  1851. @item @code{starpu_task_bundle_t bundle} (optional)
  1852. The bundle that includes this task. If no bundle is used, this should be NULL.
  1853. @item @code{int detach} (optional) (default: @code{1})
  1854. If this flag is set, it is not possible to synchronize with the task
  1855. by the means of @code{starpu_task_wait} later on. Internal data structures
  1856. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1857. flag is not set.
  1858. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1859. If this flag is set, the task structure will automatically be freed, either
  1860. after the execution of the callback if the task is detached, or during
  1861. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1862. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1863. called explicitly. Setting this flag for a statically allocated task structure
  1864. will result in undefined behaviour. The flag is set to 1 when the task is
  1865. created by calling @code{starpu_task_create()}. Note that
  1866. @code{starpu_task_wait_for_all} will not free any task.
  1867. @item @code{int regenerate} (optional)
  1868. If this flag is set, the task will be re-submitted to StarPU once it has been
  1869. executed. This flag must not be set if the destroy flag is set too.
  1870. @item @code{enum starpu_task_status status} (optional)
  1871. Current state of the task.
  1872. @item @code{struct starpu_profiling_task_info *profiling_info} (optional)
  1873. Profiling information for the task.
  1874. @item @code{double predicted} (output field)
  1875. Predicted duration of the task. This field is only set if the scheduling
  1876. strategy used performance models.
  1877. @item @code{double predicted_transfer} (optional)
  1878. Predicted data transfer duration for the task in microseconds. This field is
  1879. only valid if the scheduling strategy uses performance models.
  1880. @item @code{struct starpu_task *prev}
  1881. A pointer to the previous task. This should only be used by StarPU.
  1882. @item @code{struct starpu_task *next}
  1883. A pointer to the next task. This should only be used by StarPU.
  1884. @item @code{unsigned int mf_skip}
  1885. This is only used for tasks that use multiformat handle. This should only be
  1886. used by StarPU.
  1887. @item @code{double flops}
  1888. This can be set to the number of floating points operations that the task
  1889. will have to achieve. This is useful for easily getting GFlops curves from
  1890. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1891. @item @code{void *starpu_private}
  1892. This is private to StarPU, do not modify. If the task is allocated by hand
  1893. (without starpu_task_create), this field should be set to NULL.
  1894. @item @code{int magic}
  1895. This field is set when initializing a task. It prevents a task from being
  1896. submitted if it has not been properly initialized.
  1897. @end table
  1898. @end deftp
  1899. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1900. Initialize @var{task} with default values. This function is implicitly
  1901. called by @code{starpu_task_create}. By default, tasks initialized with
  1902. @code{starpu_task_init} must be deinitialized explicitly with
  1903. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1904. using @code{STARPU_TASK_INITIALIZER} defined below.
  1905. @end deftypefun
  1906. @defmac STARPU_TASK_INITIALIZER
  1907. It is possible to initialize statically allocated tasks with this
  1908. value. This is equivalent to initializing a starpu_task structure with
  1909. the @code{starpu_task_init} function defined above.
  1910. @end defmac
  1911. @defmac STARPU_TASK_GET_HANDLE ({struct starpu_task} *@var{task}, int @var{i})
  1912. Return the i-th data handle of the given task. If the task is defined
  1913. with a static or dynamic number of handles, will either return the
  1914. i-th element of the field @code{handles} or the i-th element of the field
  1915. @code{dyn_handles} (@pxref{Setting the Data Handles for a Task})
  1916. @end defmac
  1917. @defmac STARPU_TASK_SET_HANDLE ({struct starpu_task} *@var{task}, starpu_data_handle_t @var{handle}, int @var{i})
  1918. Set the i-th data handle of the given task with the given dat handle.
  1919. If the task is defined with a static or dynamic number of handles,
  1920. will either set the i-th element of the field @code{handles} or the
  1921. i-th element of the field @code{dyn_handles} (@pxref{Setting the Data
  1922. Handles for a Task})
  1923. @end defmac
  1924. @defmac STARPU_CODELET_GET_MODE ({struct starpu_codelet *}@var{codelet}, int @var{i})
  1925. Return the access mode of the i-th data handle of the given codelet.
  1926. If the codelet is defined with a static or dynamic number of handles,
  1927. will either return the i-th element of the field @code{modes} or the
  1928. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1929. Handles for a Task})
  1930. @end defmac
  1931. @defmac STARPU_CODELET_SET_MODE ({struct starpu_codelet *}@var{codelet}, {enum starpu_data_access_mode} @var{mode}, int @var{i})
  1932. Set the access mode of the i-th data handle of the given codelet.
  1933. If the codelet is defined with a static or dynamic number of handles,
  1934. will either set the i-th element of the field @code{modes} or the
  1935. i-th element of the field @code{dyn_modes} (@pxref{Setting the Data
  1936. Handles for a Task})
  1937. @end defmac
  1938. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1939. Allocate a task structure and initialize it with default values. Tasks
  1940. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1941. task is terminated. This means that the task pointer can not be used any more
  1942. once the task is submitted, since it can be executed at any time (unless
  1943. dependencies make it wait) and thus freed at any time.
  1944. If the destroy flag is explicitly unset, the resources used
  1945. by the task have to be freed by calling
  1946. @code{starpu_task_destroy}.
  1947. @end deftypefun
  1948. @deftypefun {struct starpu_task *} starpu_task_dup ({struct starpu_task *}@var{task})
  1949. Allocate a task structure which is the exact duplicate of the given task.
  1950. @end deftypefun
  1951. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1952. Release all the structures automatically allocated to execute @var{task}, but
  1953. not the task structure itself and values set by the user remain unchanged.
  1954. It is thus useful for statically allocated tasks for instance.
  1955. It is also useful when the user wants to execute the same operation several
  1956. times with as least overhead as possible.
  1957. It is called automatically by @code{starpu_task_destroy}.
  1958. It has to be called only after explicitly waiting for the task or after
  1959. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1960. still manipulates the task after calling the callback).
  1961. @end deftypefun
  1962. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1963. Free the resource allocated during @code{starpu_task_create} and
  1964. associated with @var{task}. This function is already called automatically
  1965. after the execution of a task when the @code{destroy} flag of the
  1966. @code{starpu_task} structure is set, which is the default for tasks created by
  1967. @code{starpu_task_create}. Calling this function on a statically allocated task
  1968. results in an undefined behaviour.
  1969. @end deftypefun
  1970. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1971. This function blocks until @var{task} has been executed. It is not possible to
  1972. synchronize with a task more than once. It is not possible to wait for
  1973. synchronous or detached tasks.
  1974. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1975. indicates that the specified task was either synchronous or detached.
  1976. @end deftypefun
  1977. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1978. This function submits @var{task} to StarPU. Calling this function does
  1979. not mean that the task will be executed immediately as there can be data or task
  1980. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1981. scheduling this task with respect to such dependencies.
  1982. This function returns immediately if the @code{synchronous} field of the
  1983. @code{starpu_task} structure was set to 0, and block until the termination of
  1984. the task otherwise. It is also possible to synchronize the application with
  1985. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1986. function for instance.
  1987. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1988. means that there is no worker able to process this task (e.g. there is no GPU
  1989. available and this task is only implemented for CUDA devices).
  1990. starpu_task_submit() can be called from anywhere, including codelet
  1991. functions and callbacks, provided that the @code{synchronous} field of the
  1992. @code{starpu_task} structure is left to 0.
  1993. @end deftypefun
  1994. @deftypefun int starpu_task_wait_for_all (void)
  1995. This function blocks until all the tasks that were submitted are terminated. It
  1996. does not destroy these tasks.
  1997. @end deftypefun
  1998. @deftypefun int starpu_task_nready (void)
  1999. @end deftypefun
  2000. @deftypefun int starpu_task_nsubmitted (void)
  2001. Return the number of submitted tasks which have not completed yet.
  2002. @end deftypefun
  2003. @deftypefun int starpu_task_nready (void)
  2004. Return the number of submitted tasks which are ready for execution are already
  2005. executing. It thus does not include tasks waiting for dependencies.
  2006. @end deftypefun
  2007. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  2008. This function returns the task currently executed by the worker, or
  2009. NULL if it is called either from a thread that is not a task or simply
  2010. because there is no task being executed at the moment.
  2011. This function must be called from the callback (not from the codelet).
  2012. @end deftypefun
  2013. @deftypefun void starpu_codelet_display_stats ({struct starpu_codelet} *@var{cl})
  2014. @anchor{starpu_codelet_display_stats}
  2015. Output on @code{stderr} some statistics on the codelet @var{cl}.
  2016. @end deftypefun
  2017. @deftypefun int starpu_task_wait_for_no_ready (void)
  2018. This function waits until there is no more ready task.
  2019. @end deftypefun
  2020. @deftypefun void starpu_task_set_implementation ({struct starpu_task *}@var{task}, unsigned @var{impl})
  2021. This function should be called by schedulers to specify the codelet
  2022. implementation to be executed when executing the task.
  2023. @end deftypefun
  2024. @deftypefun unsigned starpu_task_get_implementation ({struct starpu_task *}@var{task})
  2025. This function return the codelet implementation to be executed when
  2026. executing the task.
  2027. @end deftypefun
  2028. @c Callbacks: what can we put in callbacks ?
  2029. @node Insert Task
  2030. @section Insert Task
  2031. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  2032. Create and submit a task corresponding to @var{cl} with the following
  2033. arguments. The argument list must be zero-terminated.
  2034. The arguments following the codelets can be of the following types:
  2035. @itemize
  2036. @item
  2037. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  2038. @item
  2039. @code{STARPU_DATA_ARRAY} followed by an array of data handles and its number of elements;
  2040. @item
  2041. the specific values @code{STARPU_VALUE}, @code{STARPU_CALLBACK},
  2042. @code{STARPU_CALLBACK_ARG}, @code{STARPU_CALLBACK_WITH_ARG},
  2043. @code{STARPU_PRIORITY}, @code{STARPU_TAG}, @code{STARPU_FLOPS}, @code{STARPU_SCHED_CTX} followed by the appropriated objects
  2044. as defined below.
  2045. @end itemize
  2046. When using @code{STARPU_DATA_ARRAY}, the access mode of the data
  2047. handles is not defined.
  2048. Parameters to be passed to the codelet implementation are defined
  2049. through the type @code{STARPU_VALUE}. The function
  2050. @code{starpu_codelet_unpack_args} must be called within the codelet
  2051. implementation to retrieve them.
  2052. @end deftypefun
  2053. @defmac STARPU_VALUE
  2054. this macro is used when calling @code{starpu_insert_task}, and must be
  2055. followed by a pointer to a constant value and the size of the constant
  2056. @end defmac
  2057. @defmac STARPU_CALLBACK
  2058. this macro is used when calling @code{starpu_insert_task}, and must be
  2059. followed by a pointer to a callback function
  2060. @end defmac
  2061. @defmac STARPU_CALLBACK_ARG
  2062. this macro is used when calling @code{starpu_insert_task}, and must be
  2063. followed by a pointer to be given as an argument to the callback
  2064. function
  2065. @end defmac
  2066. @defmac STARPU_CALLBACK_WITH_ARG
  2067. this macro is used when calling @code{starpu_insert_task}, and must be
  2068. followed by two pointers: one to a callback function, and the other to
  2069. be given as an argument to the callback function; this is equivalent
  2070. to using both @code{STARPU_CALLBACK} and
  2071. @code{STARPU_CALLBACK_WITH_ARG}
  2072. @end defmac
  2073. @defmac STARPU_PRIORITY
  2074. this macro is used when calling @code{starpu_insert_task}, and must be
  2075. followed by a integer defining a priority level
  2076. @end defmac
  2077. @defmac STARPU_TAG
  2078. this macro is used when calling @code{starpu_insert_task}, and must be
  2079. followed by a tag.
  2080. @end defmac
  2081. @defmac STARPU_FLOPS
  2082. this macro is used when calling @code{starpu_insert_task}, and must be followed
  2083. by an amount of floating point operations, as a double. The user may have to
  2084. explicitly cast into double, otherwise parameter passing will not work.
  2085. @end defmac
  2086. @defmac STARPU_SCHED_CTX
  2087. this macro is used when calling @code{starpu_insert_task}, and must be followed
  2088. by the id of the scheduling context to which we want to submit the task.
  2089. @end defmac
  2090. @deftypefun void starpu_codelet_pack_args ({void **}@var{arg_buffer}, {size_t *}@var{arg_buffer_size}, ...)
  2091. Pack arguments of type @code{STARPU_VALUE} into a buffer which can be
  2092. given to a codelet and later unpacked with the function
  2093. @code{starpu_codelet_unpack_args} defined below.
  2094. @end deftypefun
  2095. @deftypefun void starpu_codelet_unpack_args ({void *}@var{cl_arg}, ...)
  2096. Retrieve the arguments of type @code{STARPU_VALUE} associated to a
  2097. task automatically created using the function
  2098. @code{starpu_insert_task} defined above.
  2099. @end deftypefun
  2100. @node Explicit Dependencies
  2101. @section Explicit Dependencies
  2102. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  2103. Declare task dependencies between a @var{task} and an array of tasks of length
  2104. @var{ndeps}. This function must be called prior to the submission of the task,
  2105. but it may called after the submission or the execution of the tasks in the
  2106. array, provided the tasks are still valid (ie. they were not automatically
  2107. destroyed). Calling this function on a task that was already submitted or with
  2108. an entry of @var{task_array} that is not a valid task anymore results in an
  2109. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  2110. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2111. same task, in this case, the dependencies are added. It is possible to have
  2112. redundancy in the task dependencies.
  2113. @end deftypefun
  2114. @deftp {Data Type} {starpu_tag_t}
  2115. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2116. dependencies between tasks by the means of those tags. To do so, fill the
  2117. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2118. be arbitrary) and set the @code{use_tag} field to 1.
  2119. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2120. not be started until the tasks which holds the declared dependency tags are
  2121. completed.
  2122. @end deftp
  2123. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  2124. Specify the dependencies of the task identified by tag @var{id}. The first
  2125. argument specifies the tag which is configured, the second argument gives the
  2126. number of tag(s) on which @var{id} depends. The following arguments are the
  2127. tags which have to be terminated to unlock the task.
  2128. This function must be called before the associated task is submitted to StarPU
  2129. with @code{starpu_task_submit}.
  2130. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2131. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2132. typically need to be explicitly casted. Using the
  2133. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2134. @cartouche
  2135. @smallexample
  2136. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2137. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2138. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2139. @end smallexample
  2140. @end cartouche
  2141. @end deftypefun
  2142. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  2143. This function is similar to @code{starpu_tag_declare_deps}, except
  2144. that its does not take a variable number of arguments but an array of
  2145. tags of size @var{ndeps}.
  2146. @cartouche
  2147. @smallexample
  2148. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2149. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2150. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2151. @end smallexample
  2152. @end cartouche
  2153. @end deftypefun
  2154. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  2155. This function blocks until the task associated to tag @var{id} has been
  2156. executed. This is a blocking call which must therefore not be called within
  2157. tasks or callbacks, but only from the application directly. It is possible to
  2158. synchronize with the same tag multiple times, as long as the
  2159. @code{starpu_tag_remove} function is not called. Note that it is still
  2160. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2161. data structure was freed (e.g. if the @code{destroy} flag of the
  2162. @code{starpu_task} was enabled).
  2163. @end deftypefun
  2164. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  2165. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2166. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  2167. terminated.
  2168. @end deftypefun
  2169. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  2170. This function can be used to clear the "already notified" status
  2171. of a tag which is not associated with a task. Before that, calling
  2172. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  2173. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  2174. successors.
  2175. @end deftypefun
  2176. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  2177. This function releases the resources associated to tag @var{id}. It can be
  2178. called once the corresponding task has been executed and when there is
  2179. no other tag that depend on this tag anymore.
  2180. @end deftypefun
  2181. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  2182. This function explicitly unlocks tag @var{id}. It may be useful in the
  2183. case of applications which execute part of their computation outside StarPU
  2184. tasks (e.g. third-party libraries). It is also provided as a
  2185. convenient tool for the programmer, for instance to entirely construct the task
  2186. DAG before actually giving StarPU the opportunity to execute the tasks. When
  2187. called several times on the same tag, notification will be done only on first
  2188. call, thus implementing "OR" dependencies, until the tag is restarted using
  2189. @code{starpu_tag_restart}.
  2190. @end deftypefun
  2191. @node Implicit Data Dependencies
  2192. @section Implicit Data Dependencies
  2193. In this section, we describe how StarPU makes it possible to insert implicit
  2194. task dependencies in order to enforce sequential data consistency. When this
  2195. data consistency is enabled on a specific data handle, any data access will
  2196. appear as sequentially consistent from the application. For instance, if the
  2197. application submits two tasks that access the same piece of data in read-only
  2198. mode, and then a third task that access it in write mode, dependencies will be
  2199. added between the two first tasks and the third one. Implicit data dependencies
  2200. are also inserted in the case of data accesses from the application.
  2201. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  2202. Set the default sequential consistency flag. If a non-zero value is passed, a
  2203. sequential data consistency will be enforced for all handles registered after
  2204. this function call, otherwise it is disabled. By default, StarPU enables
  2205. sequential data consistency. It is also possible to select the data consistency
  2206. mode of a specific data handle with the
  2207. @code{starpu_data_set_sequential_consistency_flag} function.
  2208. @end deftypefun
  2209. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  2210. Return the default sequential consistency flag
  2211. @end deftypefun
  2212. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  2213. Sets the data consistency mode associated to a data handle. The consistency
  2214. mode set using this function has the priority over the default mode which can
  2215. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  2216. @end deftypefun
  2217. @node Performance Model API
  2218. @section Performance Model API
  2219. @deftp {Data Type} {enum starpu_perfmodel_archtype}
  2220. Enumerates the various types of architectures.
  2221. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  2222. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  2223. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  2224. @table @asis
  2225. @item @code{STARPU_CPU_DEFAULT}
  2226. @item @code{STARPU_CUDA_DEFAULT}
  2227. @item @code{STARPU_OPENCL_DEFAULT}
  2228. @end table
  2229. @end deftp
  2230. @deftp {Data Type} {enum starpu_perfmodel_type}
  2231. The possible values are:
  2232. @table @asis
  2233. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  2234. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  2235. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  2236. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  2237. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  2238. @end table
  2239. @end deftp
  2240. @deftp {Data Type} {struct starpu_perfmodel}
  2241. @anchor{struct starpu_perfmodel}
  2242. contains all information about a performance model. At least the
  2243. @code{type} and @code{symbol} fields have to be filled when defining a
  2244. performance model for a codelet. For compatibility, make sure to initialize the
  2245. whole structure to zero, either by using explicit memset, or by letting the
  2246. compiler implicitly do it in e.g. static storage case.
  2247. If not provided, other fields have to be zero.
  2248. @table @asis
  2249. @item @code{type}
  2250. is the type of performance model @code{enum starpu_perfmodel_type}:
  2251. @code{STARPU_HISTORY_BASED},
  2252. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  2253. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  2254. @code{per_arch} has to be filled with functions which return the cost in
  2255. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  2256. a function that returns the cost in micro-seconds on a CPU, timing on other
  2257. archs will be determined by multiplying by an arch-specific factor.
  2258. @item @code{const char *symbol}
  2259. is the symbol name for the performance model, which will be used as
  2260. file name to store the model. It must be set otherwise the model will
  2261. be ignored.
  2262. @item @code{double (*cost_model)(struct starpu_data_descr *)}
  2263. This field is deprecated. Use instead the @code{cost_function} field.
  2264. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  2265. Used by @code{STARPU_COMMON}: takes a task and
  2266. implementation number, and must return a task duration estimation in micro-seconds.
  2267. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  2268. Used by @code{STARPU_HISTORY_BASED} and
  2269. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  2270. implementation number, and returns the size to be used as index for
  2271. history and regression.
  2272. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  2273. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  2274. starpu_per_arch_perfmodel} structures.
  2275. @item @code{unsigned is_loaded}
  2276. Whether the performance model is already loaded from the disk.
  2277. @item @code{unsigned benchmarking}
  2278. Whether the performance model is still being calibrated.
  2279. @item @code{pthread_rwlock_t model_rwlock}
  2280. Lock to protect concurrency between loading from disk (W), updating the values
  2281. (W), and making a performance estimation (R).
  2282. @end table
  2283. @end deftp
  2284. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  2285. @table @asis
  2286. @item @code{double sumlny} sum of ln(measured)
  2287. @item @code{double sumlnx} sum of ln(size)
  2288. @item @code{double sumlnx2} sum of ln(size)^2
  2289. @item @code{unsigned long minx} minimum size
  2290. @item @code{unsigned long maxx} maximum size
  2291. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  2292. @item @code{double alpha} estimated = alpha * size ^ beta
  2293. @item @code{double beta}
  2294. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  2295. @item @code{double a, b, c} estimaed = a size ^b + c
  2296. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  2297. @item @code{unsigned nsample} number of sample values for non-linear regression
  2298. @end table
  2299. @end deftp
  2300. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  2301. contains information about the performance model of a given arch.
  2302. @table @asis
  2303. @item @code{double (*cost_model)(struct starpu_data_descr *t)}
  2304. This field is deprecated. Use instead the @code{cost_function} field.
  2305. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2306. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  2307. target arch and implementation number (as mere conveniency, since the array
  2308. is already indexed by these), and must return a task duration estimation in
  2309. micro-seconds.
  2310. @item @code{size_t (*size_base)(struct starpu_task *, enum starpu_perfmodel_archtype arch, unsigned nimpl)}
  2311. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  2312. case it depends on the architecture-specific implementation.
  2313. @item @code{struct starpu_htbl32_node *history}
  2314. The history of performance measurements.
  2315. @item @code{struct starpu_perfmodel_history_list *list}
  2316. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  2317. records all execution history measures.
  2318. @item @code{struct starpu_perfmodel_regression_model regression}
  2319. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  2320. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  2321. regression.
  2322. @end table
  2323. @end deftp
  2324. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  2325. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  2326. @end deftypefun
  2327. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  2328. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  2329. @end deftypefun
  2330. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  2331. returns the path to the debugging information for the performance model.
  2332. @end deftypefun
  2333. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perfmodel_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  2334. returns the architecture name for @var{arch}.
  2335. @end deftypefun
  2336. @deftypefun {enum starpu_perfmodel_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  2337. returns the architecture type of a given worker.
  2338. @end deftypefun
  2339. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  2340. prints a list of all performance models on @var{output}.
  2341. @end deftypefun
  2342. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  2343. todo
  2344. @end deftypefun
  2345. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  2346. todo
  2347. @end deftypefun
  2348. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  2349. prints a matrix of bus bandwidths on @var{f}.
  2350. @end deftypefun
  2351. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  2352. prints the affinity devices on @var{f}.
  2353. @end deftypefun
  2354. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  2355. prints a description of the topology on @var{f}.
  2356. @end deftypefun
  2357. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  2358. This feeds the performance model @var{model} with an explicit measurement
  2359. @var{measured}, in addition to measurements done by StarPU itself. This can be
  2360. useful when the application already has an existing set of measurements done
  2361. in good conditions, that StarPU could benefit from instead of doing on-line
  2362. measurements. And example of use can be see in @ref{Performance model example}.
  2363. @end deftypefun
  2364. @node Profiling API
  2365. @section Profiling API
  2366. @deftypefun int starpu_profiling_status_set (int @var{status})
  2367. Thie function sets the profiling status. Profiling is activated by passing
  2368. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  2369. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2370. resets all profiling measurements. When profiling is enabled, the
  2371. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2372. to a valid @code{struct starpu_profiling_task_info} structure containing
  2373. information about the execution of the task.
  2374. Negative return values indicate an error, otherwise the previous status is
  2375. returned.
  2376. @end deftypefun
  2377. @deftypefun int starpu_profiling_status_get (void)
  2378. Return the current profiling status or a negative value in case there was an error.
  2379. @end deftypefun
  2380. @deftypefun void starpu_profiling_set_id (int @var{new_id})
  2381. This function sets the ID used for profiling trace filename. It needs to be
  2382. called before starpu_init.
  2383. @end deftypefun
  2384. @deftp {Data Type} {struct starpu_profiling_task_info}
  2385. This structure contains information about the execution of a task. It is
  2386. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2387. structure if profiling was enabled. The different fields are:
  2388. @table @asis
  2389. @item @code{struct timespec submit_time}
  2390. Date of task submission (relative to the initialization of StarPU).
  2391. @item @code{struct timespec push_start_time}
  2392. Time when the task was submitted to the scheduler.
  2393. @item @code{struct timespec push_end_time}
  2394. Time when the scheduler finished with the task submission.
  2395. @item @code{struct timespec pop_start_time}
  2396. Time when the scheduler started to be requested for a task, and eventually gave
  2397. that task.
  2398. @item @code{struct timespec pop_end_time}
  2399. Time when the scheduler finished providing the task for execution.
  2400. @item @code{struct timespec acquire_data_start_time}
  2401. Time when the worker started fetching input data.
  2402. @item @code{struct timespec acquire_data_end_time}
  2403. Time when the worker finished fetching input data.
  2404. @item @code{struct timespec start_time}
  2405. Date of task execution beginning (relative to the initialization of StarPU).
  2406. @item @code{struct timespec end_time}
  2407. Date of task execution termination (relative to the initialization of StarPU).
  2408. @item @code{struct timespec release_data_start_time}
  2409. Time when the worker started releasing data.
  2410. @item @code{struct timespec release_data_end_time}
  2411. Time when the worker finished releasing data.
  2412. @item @code{struct timespec callback_start_time}
  2413. Time when the worker started the application callback for the task.
  2414. @item @code{struct timespec callback_end_time}
  2415. Time when the worker finished the application callback for the task.
  2416. @item @code{workerid}
  2417. Identifier of the worker which has executed the task.
  2418. @item @code{uint64_t used_cycles}
  2419. Number of cycles used by the task, only available in the MoviSim
  2420. @item @code{uint64_t stall_cycles}
  2421. Number of cycles stalled within the task, only available in the MoviSim
  2422. @item @code{double power_consumed}
  2423. Power consumed by the task, only available in the MoviSim
  2424. @end table
  2425. @end deftp
  2426. @deftp {Data Type} {struct starpu_profiling_worker_info}
  2427. This structure contains the profiling information associated to a
  2428. worker. The different fields are:
  2429. @table @asis
  2430. @item @code{struct timespec start_time}
  2431. Starting date for the reported profiling measurements.
  2432. @item @code{struct timespec total_time}
  2433. Duration of the profiling measurement interval.
  2434. @item @code{struct timespec executing_time}
  2435. Time spent by the worker to execute tasks during the profiling measurement interval.
  2436. @item @code{struct timespec sleeping_time}
  2437. Time spent idling by the worker during the profiling measurement interval.
  2438. @item @code{int executed_tasks}
  2439. Number of tasks executed by the worker during the profiling measurement interval.
  2440. @item @code{uint64_t used_cycles}
  2441. Number of cycles used by the worker, only available in the MoviSim
  2442. @item @code{uint64_t stall_cycles}
  2443. Number of cycles stalled within the worker, only available in the MoviSim
  2444. @item @code{double power_consumed}
  2445. Power consumed by the worker, only available in the MoviSim
  2446. @end table
  2447. @end deftp
  2448. @deftypefun int starpu_profiling_worker_get_info (int @var{workerid}, {struct starpu_profiling_worker_info *}@var{worker_info})
  2449. Get the profiling info associated to the worker identified by @var{workerid},
  2450. and reset the profiling measurements. If the @var{worker_info} argument is
  2451. NULL, only reset the counters associated to worker @var{workerid}.
  2452. Upon successful completion, this function returns 0. Otherwise, a negative
  2453. value is returned.
  2454. @end deftypefun
  2455. @deftp {Data Type} {struct starpu_profiling_bus_info}
  2456. The different fields are:
  2457. @table @asis
  2458. @item @code{struct timespec start_time}
  2459. Time of bus profiling startup.
  2460. @item @code{struct timespec total_time}
  2461. Total time of bus profiling.
  2462. @item @code{int long long transferred_bytes}
  2463. Number of bytes transferred during profiling.
  2464. @item @code{int transfer_count}
  2465. Number of transfers during profiling.
  2466. @end table
  2467. @end deftp
  2468. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_profiling_bus_info *}@var{bus_info})
  2469. Get the profiling info associated to the worker designated by @var{workerid},
  2470. and reset the profiling measurements. If worker_info is NULL, only reset the
  2471. counters.
  2472. @end deftypefun
  2473. @deftypefun int starpu_bus_get_count (void)
  2474. Return the number of buses in the machine.
  2475. @end deftypefun
  2476. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2477. Return the identifier of the bus between @var{src} and @var{dst}
  2478. @end deftypefun
  2479. @deftypefun int starpu_bus_get_src (int @var{busid})
  2480. Return the source point of bus @var{busid}
  2481. @end deftypefun
  2482. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2483. Return the destination point of bus @var{busid}
  2484. @end deftypefun
  2485. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2486. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2487. @end deftypefun
  2488. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2489. Converts the given timespec @var{ts} into microseconds.
  2490. @end deftypefun
  2491. @deftypefun void starpu_profiling_bus_helper_display_summary (void)
  2492. Displays statistics about the bus on stderr. if the environment
  2493. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2494. automatically by @code{starpu_shutdown()}.
  2495. @end deftypefun
  2496. @deftypefun void starpu_profiling_worker_helper_display_summary (void)
  2497. Displays statistics about the workers on stderr if the environment
  2498. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2499. automatically by @code{starpu_shutdown()}.
  2500. @end deftypefun
  2501. @deftypefun void starpu_data_display_memory_stats ()
  2502. Display statistics about the current data handles registered within
  2503. StarPU. StarPU must have been configured with the option
  2504. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2505. @end deftypefun
  2506. @node Theoretical lower bound on execution time API
  2507. @section Theoretical lower bound on execution time
  2508. @deftypefun void starpu_bound_start (int @var{deps}, int @var{prio})
  2509. Start recording tasks (resets stats). @var{deps} tells whether
  2510. dependencies should be recorded too (this is quite expensive)
  2511. @end deftypefun
  2512. @deftypefun void starpu_bound_stop (void)
  2513. Stop recording tasks
  2514. @end deftypefun
  2515. @deftypefun void starpu_bound_print_dot ({FILE *}@var{output})
  2516. Print the DAG that was recorded
  2517. @end deftypefun
  2518. @deftypefun void starpu_bound_compute ({double *}@var{res}, {double *}@var{integer_res}, int @var{integer})
  2519. Get theoretical upper bound (in ms) (needs glpk support detected by @code{configure} script). It returns 0 if some performance models are not calibrated.
  2520. @end deftypefun
  2521. @deftypefun void starpu_bound_print_lp ({FILE *}@var{output})
  2522. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2523. the lp format
  2524. @end deftypefun
  2525. @deftypefun void starpu_bound_print_mps ({FILE *}@var{output})
  2526. Emit the Linear Programming system on @var{output} for the recorded tasks, in
  2527. the mps format
  2528. @end deftypefun
  2529. @deftypefun void starpu_bound_print ({FILE *}@var{output}, int @var{integer})
  2530. Emit statistics of actual execution vs theoretical upper bound. @var{integer}
  2531. permits to choose between integer solving (which takes a long time but is
  2532. correct), and relaxed solving (which provides an approximate solution).
  2533. @end deftypefun
  2534. @node CUDA extensions
  2535. @section CUDA extensions
  2536. @defmac STARPU_USE_CUDA
  2537. This macro is defined when StarPU has been installed with CUDA
  2538. support. It should be used in your code to detect the availability of
  2539. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2540. @end defmac
  2541. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2542. This function gets the current worker's CUDA stream.
  2543. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2544. function is only provided for convenience so that programmers can easily use
  2545. asynchronous operations within codelets without having to create a stream by
  2546. hand. Note that the application is not forced to use the stream provided by
  2547. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2548. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2549. the likelihood of having all transfers overlapped.
  2550. @end deftypefun
  2551. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2552. This function returns a pointer to device properties for worker @var{workerid}
  2553. (assumed to be a CUDA worker).
  2554. @end deftypefun
  2555. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2556. Report a CUDA error.
  2557. @end deftypefun
  2558. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2559. Calls starpu_cuda_report_error, passing the current function, file and line
  2560. position.
  2561. @end defmac
  2562. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2563. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2564. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2565. The function first tries to copy the data asynchronous (unless
  2566. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2567. @var{stream} is @code{NULL}, it copies the data synchronously.
  2568. The function returns @code{-EAGAIN} if the asynchronous launch was
  2569. successfull. It returns 0 if the synchronous copy was successful, or
  2570. fails otherwise.
  2571. @end deftypefun
  2572. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2573. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2574. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2575. the @code{starpu_conf} structure.
  2576. @end deftypefun
  2577. @deftypefun void starpu_cublas_init (void)
  2578. This function initializes CUBLAS on every CUDA device.
  2579. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2580. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2581. controlled by StarPU. This call blocks until CUBLAS has been properly
  2582. initialized on every device.
  2583. @end deftypefun
  2584. @deftypefun void starpu_cublas_shutdown (void)
  2585. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2586. @end deftypefun
  2587. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2588. Report a cublas error.
  2589. @end deftypefun
  2590. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2591. Calls starpu_cublas_report_error, passing the current function, file and line
  2592. position.
  2593. @end defmac
  2594. @node OpenCL extensions
  2595. @section OpenCL extensions
  2596. @menu
  2597. * Writing OpenCL kernels:: Writing OpenCL kernels
  2598. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2599. * Loading OpenCL kernels:: Loading OpenCL kernels
  2600. * OpenCL statistics:: Collecting statistics from OpenCL
  2601. * OpenCL utilities:: Utilities for OpenCL
  2602. @end menu
  2603. @defmac STARPU_USE_OPENCL
  2604. This macro is defined when StarPU has been installed with OpenCL
  2605. support. It should be used in your code to detect the availability of
  2606. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2607. @end defmac
  2608. @node Writing OpenCL kernels
  2609. @subsection Writing OpenCL kernels
  2610. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2611. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2612. @end deftypefun
  2613. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2614. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2615. @end deftypefun
  2616. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2617. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2618. @end deftypefun
  2619. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2620. Return the context of the current worker.
  2621. @end deftypefun
  2622. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2623. Return the computation kernel command queue of the current worker.
  2624. @end deftypefun
  2625. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2626. Sets the arguments of a given kernel. The list of arguments must be given as
  2627. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2628. The last argument must be 0. Returns the number of arguments that were
  2629. successfully set. In case of failure, returns the id of the argument
  2630. that could not be set and @var{err} is set to the error returned by
  2631. OpenCL. Otherwise, returns the number of arguments that were set.
  2632. @cartouche
  2633. @smallexample
  2634. int n;
  2635. cl_int err;
  2636. cl_kernel kernel;
  2637. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2638. sizeof(foo), &foo,
  2639. sizeof(bar), &bar,
  2640. 0);
  2641. if (n != 2)
  2642. fprintf(stderr, "Error : %d\n", err);
  2643. @end smallexample
  2644. @end cartouche
  2645. @end deftypefun
  2646. @node Compiling OpenCL kernels
  2647. @subsection Compiling OpenCL kernels
  2648. Source codes for OpenCL kernels can be stored in a file or in a
  2649. string. StarPU provides functions to build the program executable for
  2650. each available OpenCL device as a @code{cl_program} object. This
  2651. program executable can then be loaded within a specific queue as
  2652. explained in the next section. These are only helpers, Applications
  2653. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2654. use (e.g. different programs on the different OpenCL devices, for
  2655. relocation purpose for instance).
  2656. @deftp {Data Type} {struct starpu_opencl_program}
  2657. Stores the OpenCL programs as compiled for the different OpenCL
  2658. devices. The different fields are:
  2659. @table @asis
  2660. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2661. Stores each program for each OpenCL device.
  2662. @end table
  2663. @end deftp
  2664. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2665. @anchor{starpu_opencl_load_opencl_from_file}
  2666. This function compiles an OpenCL source code stored in a file.
  2667. @end deftypefun
  2668. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2669. This function compiles an OpenCL source code stored in a string.
  2670. @end deftypefun
  2671. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2672. This function unloads an OpenCL compiled code.
  2673. @end deftypefun
  2674. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2675. @anchor{starpu_opencl_load_program_source}
  2676. Store the contents of the file @var{source_file_name} in the buffer
  2677. @var{opencl_program_source}. The file @var{source_file_name} can be
  2678. located in the current directory, or in the directory specified by the
  2679. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2680. directory @code{share/starpu/opencl} of the installation directory of
  2681. StarPU, or in the source directory of StarPU.
  2682. When the file is found, @code{located_file_name} is the full name of
  2683. the file as it has been located on the system, @code{located_dir_name}
  2684. the directory where it has been located. Otherwise, they are both set
  2685. to the empty string.
  2686. @end deftypefun
  2687. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2688. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2689. with the given options @code{build_options} and stores the result in
  2690. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2691. filename as @code{source_file_name}. The compilation is done for every
  2692. OpenCL device, and the filename is suffixed with the vendor id and the
  2693. device id of the OpenCL device.
  2694. @end deftypefun
  2695. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2696. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2697. with the given options @code{build_options} and stores the result in
  2698. the directory @code{$STARPU_HOME/.starpu/opencl}
  2699. with the filename
  2700. @code{file_name}. The compilation is done for every
  2701. OpenCL device, and the filename is suffixed with the vendor id and the
  2702. device id of the OpenCL device.
  2703. @end deftypefun
  2704. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2705. Compile the binary OpenCL kernel identified with @var{id}. For every
  2706. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2707. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2708. @end deftypefun
  2709. @node Loading OpenCL kernels
  2710. @subsection Loading OpenCL kernels
  2711. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2712. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2713. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2714. @var{kernel_name}
  2715. @end deftypefun
  2716. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2717. Release the given @var{kernel}, to be called after kernel execution.
  2718. @end deftypefun
  2719. @node OpenCL statistics
  2720. @subsection OpenCL statistics
  2721. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2722. This function allows to collect statistics on a kernel execution.
  2723. After termination of the kernels, the OpenCL codelet should call this function
  2724. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2725. collect statistics about the kernel execution (used cycles, consumed power).
  2726. @end deftypefun
  2727. @node OpenCL utilities
  2728. @subsection OpenCL utilities
  2729. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2730. Return the error message in English corresponding to @var{status}, an
  2731. OpenCL error code.
  2732. @end deftypefun
  2733. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2734. Given a valid error @var{status}, prints the corresponding error message on
  2735. stdout, along with the given function name @var{func}, the given filename
  2736. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2737. @end deftypefun
  2738. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2739. Call the function @code{starpu_opencl_display_error} with the given
  2740. error @var{status}, the current function name, current file and line
  2741. number, and a empty message.
  2742. @end defmac
  2743. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2744. Call the function @code{starpu_opencl_display_error} and abort.
  2745. @end deftypefun
  2746. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2747. Call the function @code{starpu_opencl_report_error} with the given
  2748. error @var{status}, with the current function name, current file and
  2749. line number, and a empty message.
  2750. @end defmac
  2751. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2752. Call the function @code{starpu_opencl_report_error} with the given
  2753. message and the given error @var{status}, with the current function
  2754. name, current file and line number.
  2755. @end defmac
  2756. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2757. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2758. valid combination of cl_mem_flags values.
  2759. @end deftypefun
  2760. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2761. Copy @var{size} bytes from the given @var{ptr} on
  2762. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2763. @var{offset} is the offset, in bytes, in @var{buffer}.
  2764. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2765. synchronised before returning. If non NULL, @var{event} can be used
  2766. after the call to wait for this particular copy to complete.
  2767. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2768. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2769. was successful, or to 0 if event was NULL.
  2770. @end deftypefun
  2771. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2772. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2773. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2774. @var{offset} is the offset, in bytes, in @var{buffer}.
  2775. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2776. synchronised before returning. If non NULL, @var{event} can be used
  2777. after the call to wait for this particular copy to complete.
  2778. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2779. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2780. was successful, or to 0 if event was NULL.
  2781. @end deftypefun
  2782. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2783. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2784. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2785. OpenCL @var{dst_node}.
  2786. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2787. synchronised before returning. If non NULL, @var{event} can be used
  2788. after the call to wait for this particular copy to complete.
  2789. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2790. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2791. was successful, or to 0 if event was NULL.
  2792. @end deftypefun
  2793. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2794. Copy @var{size} bytes from byte offset @var{src_offset} of
  2795. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2796. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2797. synchronised before returning. If non NULL, @var{event} can be used
  2798. after the call to wait for this particular copy to complete.
  2799. The function returns @code{-EAGAIN} if the asynchronous launch was
  2800. successfull. It returns 0 if the synchronous copy was successful, or
  2801. fails otherwise.
  2802. @end deftypefun
  2803. @node MIC extensions
  2804. @section MIC extensions
  2805. @defmac STARPU_USE_MIC
  2806. This macro is defined when StarPU has been installed with MIC
  2807. support. It should be used in your code to detect the availability of
  2808. MIC.
  2809. @end defmac
  2810. @deftypefun int starpu_mic_register_kernel({starpu_mic_func_symbol_t *}@var{symbol}, {const char *}@var{func_name})
  2811. Initiate a lookup on each MIC device to find the adress of the function
  2812. named FUNC_NAME, store them in the global array kernels and return
  2813. the index in the array through SYMBOL.
  2814. @end deftypefun
  2815. @deftypefun starpu_mic_kernel_t starpu_mic_get_kernel(starpu_mic_func_symbol_t @var{symbol})
  2816. If success, return the pointer to the function defined by SYMBOL on the
  2817. device linked to the called device. This can for instance be used in a
  2818. @code{starpu_mic_func_t} implementation.
  2819. @end deftypefun
  2820. @node SCC extensions
  2821. @section SCC extensions
  2822. @defmac STARPU_USE_SCC
  2823. This macro is defined when StarPU has been installed with SCC
  2824. support. It should be used in your code to detect the availability of
  2825. SCC.
  2826. @end defmac
  2827. @deftypefun int starpu_scc_register_kernel({starpu_scc_func_symbol_t *}@var{symbol}, {const char *}@var{func_name})
  2828. Initiate a lookup on each SCC device to find the adress of the function
  2829. named FUNC_NAME, store them in the global array kernels and return
  2830. the index in the array through SYMBOL.
  2831. @end deftypefun
  2832. @deftypefun starpu_scc_kernel_t starpu_scc_get_kernel(starpu_scc_func_symbol_t @var{symbol})
  2833. If success, return the pointer to the function defined by SYMBOL on the
  2834. device linked to the called device. This can for instance be used in a
  2835. @code{starpu_scc_func_t} implementation.
  2836. @end deftypefun
  2837. @node Miscellaneous helpers
  2838. @section Miscellaneous helpers
  2839. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2840. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2841. The @var{asynchronous} parameter indicates whether the function should
  2842. block or not. In the case of an asynchronous call, it is possible to
  2843. synchronize with the termination of this operation either by the means of
  2844. implicit dependencies (if enabled) or by calling
  2845. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2846. this callback function is executed after the handle has been copied, and it is
  2847. given the @var{callback_arg} pointer as argument.
  2848. @end deftypefun
  2849. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2850. This function executes the given function on a subset of workers.
  2851. When calling this method, the offloaded function specified by the first argument is
  2852. executed by every StarPU worker that may execute the function.
  2853. The second argument is passed to the offloaded function.
  2854. The last argument specifies on which types of processing units the function
  2855. should be executed. Similarly to the @var{where} field of the
  2856. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2857. should be executed on every CUDA device and every CPU by passing
  2858. @code{STARPU_CPU|STARPU_CUDA}.
  2859. This function blocks until the function has been executed on every appropriate
  2860. processing units, so that it may not be called from a callback function for
  2861. instance.
  2862. @end deftypefun
  2863. @node FXT Support
  2864. @section FXT Support
  2865. @deftypefun void starpu_fxt_start_profiling (void)
  2866. Start recording the trace. The trace is by default started from
  2867. @code{starpu_init()} call, but can be paused by using
  2868. @code{starpu_fxt_stop_profiling}, in which case
  2869. @code{starpu_fxt_start_profiling} should be called to specify when to resume
  2870. recording events.
  2871. @end deftypefun
  2872. @deftypefun void starpu_fxt_stop_profiling (void)
  2873. Stop recording the trace. The trace is by default stopped at
  2874. @code{starpu_shutdown()} call. @code{starpu_fxt_stop_profiling} can however be
  2875. used to stop it earlier. @code{starpu_fxt_start_profiling} can then be called to
  2876. start recording it again, etc.
  2877. @end deftypefun
  2878. @node FFT Support
  2879. @section FFT Support
  2880. @deftypefun {void *} starpufft_malloc (size_t @var{n})
  2881. Allocates memory for @var{n} bytes. This is preferred over @code{malloc}, since
  2882. it allocates pinned memory, which allows overlapped transfers.
  2883. @end deftypefun
  2884. @deftypefun {void *} starpufft_free (void *@var{p})
  2885. Release memory previously allocated.
  2886. @end deftypefun
  2887. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_1d (int @var{n}, int @var{sign}, unsigned @var{flags})
  2888. Initializes a plan for 1D FFT of size @var{n}. @var{sign} can be
  2889. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2890. @end deftypefun
  2891. @deftypefun {struct starpufft_plan *} starpufft_plan_dft_2d (int @var{n}, int @var{m}, int @var{sign}, unsigned @var{flags})
  2892. Initializes a plan for 2D FFT of size (@var{n}, @var{m}). @var{sign} can be
  2893. @code{STARPUFFT_FORWARD} or @code{STARPUFFT_INVERSE}. @var{flags} must be 0.
  2894. @end deftypefun
  2895. @deftypefun {struct starpu_task *} starpufft_start (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2896. Start an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2897. input and output. This only submits the task and does not wait for it.
  2898. The application should call @code{starpufft_cleanup} to unregister the data.
  2899. @end deftypefun
  2900. @deftypefun {struct starpu_task *} starpufft_start_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2901. Start an FFT previously planned as @var{p}, using data handles @var{in} and
  2902. @var{out} as input and output (assumed to be vectors of elements of the expected
  2903. types). This only submits the task and does not wait for it.
  2904. @end deftypefun
  2905. @deftypefun void starpufft_execute (starpufft_plan @var{p}, void *@var{in}, void *@var{out})
  2906. Execute an FFT previously planned as @var{p}, using @var{in} and @var{out} as
  2907. input and output. This submits and waits for the task.
  2908. @end deftypefun
  2909. @deftypefun void starpufft_execute_handle (starpufft_plan @var{p}, starpu_data_handle_t @var{in}, starpu_data_handle_t @var{out})
  2910. Execute an FFT previously planned as @var{p}, using data handles @var{in} and
  2911. @var{out} as input and output (assumed to be vectors of elements of the expected
  2912. types). This submits and waits for the task.
  2913. @end deftypefun
  2914. @deftypefun void starpufft_cleanup (starpufft_plan @var{p})
  2915. Releases data for plan @var{p}, in the @code{starpufft_start} case.
  2916. @end deftypefun
  2917. @deftypefun void starpufft_destroy_plan (starpufft_plan @var{p})
  2918. Destroys plan @var{p}, i.e. release all CPU (fftw) and GPU (cufft) resources.
  2919. @end deftypefun
  2920. @node MPI
  2921. @section MPI
  2922. @menu
  2923. * Initialisation::
  2924. * Communication::
  2925. * Communication Cache::
  2926. * MPI Insert Task::
  2927. * Collective Operations::
  2928. @end menu
  2929. @node Initialisation
  2930. @subsection Initialisation
  2931. @deftypefun int starpu_mpi_init (int *@var{argc}, char ***@var{argv}, int initialize_mpi)
  2932. Initializes the starpumpi library. @code{initialize_mpi} indicates if
  2933. MPI should be initialized or not by StarPU. If the value is not @code{0},
  2934. MPI will be initialized by calling @code{MPI_Init_Thread(argc, argv,
  2935. MPI_THREAD_SERIALIZED, ...)}.
  2936. @end deftypefun
  2937. @deftypefun int starpu_mpi_initialize (void)
  2938. This function has been made deprecated. One should use instead the
  2939. function @code{starpu_mpi_init()} defined above.
  2940. This function does not call @code{MPI_Init}, it should be called beforehand.
  2941. @end deftypefun
  2942. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  2943. This function has been made deprecated. One should use instead the
  2944. function @code{starpu_mpi_init()} defined above.
  2945. MPI will be initialized by starpumpi by calling @code{MPI_Init_Thread(argc, argv,
  2946. MPI_THREAD_SERIALIZED, ...)}.
  2947. @end deftypefun
  2948. @deftypefun int starpu_mpi_shutdown (void)
  2949. Cleans the starpumpi library. This must be called between calling
  2950. @code{starpu_mpi} functions and @code{starpu_shutdown()}.
  2951. @code{MPI_Finalize()} will be called if StarPU-MPI has been initialized
  2952. by @code{starpu_mpi_init()}.
  2953. @end deftypefun
  2954. @deftypefun void starpu_mpi_comm_amounts_retrieve (size_t *@var{comm_amounts})
  2955. Retrieve the current amount of communications from the current node in
  2956. the array @code{comm_amounts} which must have a size greater or equal
  2957. to the world size. Communications statistics must be enabled
  2958. (@pxref{STARPU_COMM_STATS}).
  2959. @end deftypefun
  2960. @deftypefun void starpu_mpi_set_communication_tag (int @var{tag})
  2961. @anchor{starpu_mpi_set_communication_tag}
  2962. Tell StarPU-MPI which MPI tag to use for all its communications.
  2963. @end deftypefun
  2964. @deftypefun int starpu_mpi_get_communication_tag (void)
  2965. @anchor{starpu_mpi_get_communication_tag}
  2966. Returns the MPI tag which will be used for all StarPU-MPI communications.
  2967. @end deftypefun
  2968. @node Communication
  2969. @subsection Communication
  2970. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2971. Performs a standard-mode, blocking send of @var{data_handle} to the
  2972. node @var{dest} using the message tag @code{mpi_tag} within the
  2973. communicator @var{comm}.
  2974. @end deftypefun
  2975. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  2976. Performs a standard-mode, blocking receive in @var{data_handle} from the
  2977. node @var{source} using the message tag @code{mpi_tag} within the
  2978. communicator @var{comm}.
  2979. @end deftypefun
  2980. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2981. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2982. node @var{dest} using the message tag @code{mpi_tag} within the
  2983. communicator @var{comm}. After the call, the pointer to the request
  2984. @var{req} can be used to test or to wait for the completion of the communication.
  2985. @end deftypefun
  2986. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  2987. Posts a nonblocking receive in @var{data_handle} from the
  2988. node @var{source} using the message tag @code{mpi_tag} within the
  2989. communicator @var{comm}. After the call, the pointer to the request
  2990. @var{req} can be used to test or to wait for the completion of the communication.
  2991. @end deftypefun
  2992. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  2993. Posts a standard-mode, non blocking send of @var{data_handle} to the
  2994. node @var{dest} using the message tag @code{mpi_tag} within the
  2995. communicator @var{comm}. On completion, the @var{callback} function is
  2996. called with the argument @var{arg}. Similarly to the pthread detached
  2997. functionality, when a detached communication completes, its resources
  2998. are automatically released back to the system, there is no need to
  2999. test or to wait for the completion of the request.
  3000. @end deftypefun
  3001. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  3002. Posts a nonblocking receive in @var{data_handle} from the
  3003. node @var{source} using the message tag @code{mpi_tag} within the
  3004. communicator @var{comm}. On completion, the @var{callback} function is
  3005. called with the argument @var{arg}. Similarly to the pthread detached
  3006. functionality, when a detached communication completes, its resources
  3007. are automatically released back to the system, there is no need to
  3008. test or to wait for the completion of the request.
  3009. @end deftypefun
  3010. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  3011. Returns when the operation identified by request @var{req} is complete.
  3012. @end deftypefun
  3013. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  3014. If the operation identified by @var{req} is complete, set @var{flag}
  3015. to 1. The @var{status} object is set to contain information on the
  3016. completed operation.
  3017. @end deftypefun
  3018. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  3019. Blocks the caller until all group members of the communicator
  3020. @var{comm} have called it.
  3021. @end deftypefun
  3022. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  3023. Posts a standard-mode, non blocking send of @var{data_handle} to the
  3024. node @var{dest} using the message tag @code{mpi_tag} within the
  3025. communicator @var{comm}. On completion, @var{tag} is unlocked.
  3026. @end deftypefun
  3027. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  3028. Posts a nonblocking receive in @var{data_handle} from the
  3029. node @var{source} using the message tag @code{mpi_tag} within the
  3030. communicator @var{comm}. On completion, @var{tag} is unlocked.
  3031. @end deftypefun
  3032. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  3033. Posts @var{array_size} standard-mode, non blocking send. Each post
  3034. sends the n-th data of the array @var{data_handle} to the n-th node of
  3035. the array @var{dest}
  3036. using the n-th message tag of the array @code{mpi_tag} within the n-th
  3037. communicator of the array
  3038. @var{comm}. On completion of the all the requests, @var{tag} is unlocked.
  3039. @end deftypefun
  3040. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  3041. Posts @var{array_size} nonblocking receive. Each post receives in the
  3042. n-th data of the array @var{data_handle} from the n-th
  3043. node of the array @var{source} using the n-th message tag of the array
  3044. @code{mpi_tag} within the n-th communicator of the array @var{comm}.
  3045. On completion of the all the requests, @var{tag} is unlocked.
  3046. @end deftypefun
  3047. @node Communication Cache
  3048. @subsection Communication Cache
  3049. @deftypefun void starpu_mpi_cache_flush (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  3050. Clear the send and receive communication cache for the data
  3051. @var{data_handle}. The function has to be called synchronously by all
  3052. the MPI nodes.
  3053. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  3054. @end deftypefun
  3055. @deftypefun void starpu_mpi_cache_flush_all_data (MPI_Comm @var{comm})
  3056. Clear the send and receive communication cache for all data. The
  3057. function has to be called synchronously by all the MPI nodes.
  3058. The function does nothing if the cache mechanism is disabled (@pxref{STARPU_MPI_CACHE}).
  3059. @end deftypefun
  3060. @node MPI Insert Task
  3061. @subsection MPI Insert Task
  3062. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  3063. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  3064. @end deftypefun
  3065. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  3066. Returns the MPI tag to be used when exchanging the data.
  3067. @end deftypefun
  3068. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  3069. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  3070. always keep an up-to-date value, and will by default execute tasks which write
  3071. to it.
  3072. @end deftypefun
  3073. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  3074. Returns the last value set by @code{starpu_data_set_rank}.
  3075. @end deftypefun
  3076. @deftypefun starpu_data_handle_t starpu_data_get_data_handle_from_tag (int @var{tag})
  3077. Returns the data handle associated to the MPI tag, or NULL if there is not.
  3078. @end deftypefun
  3079. @defmac STARPU_EXECUTE_ON_NODE
  3080. this macro is used when calling @code{starpu_mpi_insert_task}, and
  3081. must be followed by a integer value which specified the node on which
  3082. to execute the codelet.
  3083. @end defmac
  3084. @defmac STARPU_EXECUTE_ON_DATA
  3085. this macro is used when calling @code{starpu_mpi_insert_task}, and
  3086. must be followed by a data handle to specify that the node owning the
  3087. given data will execute the codelet.
  3088. @end defmac
  3089. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  3090. Create and submit a task corresponding to @var{codelet} with the following
  3091. arguments. The argument list must be zero-terminated.
  3092. The arguments following the codelets are the same types as for the
  3093. function @code{starpu_insert_task} defined in @ref{Insert Task
  3094. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  3095. integer allows to specify the MPI node to execute the codelet. It is also
  3096. possible to specify that the node owning a specific data will execute
  3097. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  3098. handle.
  3099. The internal algorithm is as follows:
  3100. @enumerate
  3101. @item Find out which MPI node is going to execute the codelet.
  3102. @enumerate
  3103. @item If there is only one node owning data in W mode, it will
  3104. be selected;
  3105. @item If there is several nodes owning data in W node, the one
  3106. selected will be the one having the least data in R mode so as
  3107. to minimize the amount of data to be transfered;
  3108. @item The argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  3109. integer can be used to specify the node;
  3110. @item The argument @code{STARPU_EXECUTE_ON_DATA} followed by a
  3111. data handle can be used to specify that the node owing the given
  3112. data will execute the codelet.
  3113. @end enumerate
  3114. @item Send and receive data as requested. Nodes owning data which need to be
  3115. read by the task are sending them to the MPI node which will execute it. The
  3116. latter receives them.
  3117. @item Execute the codelet. This is done by the MPI node selected in the
  3118. 1st step of the algorithm.
  3119. @item If several MPI nodes own data to be written to, send written
  3120. data back to their owners.
  3121. @end enumerate
  3122. The algorithm also includes a communication cache mechanism that
  3123. allows not to send data twice to the same MPI node, unless the data
  3124. has been modified. The cache can be disabled
  3125. (@pxref{STARPU_MPI_CACHE}).
  3126. @c todo parler plus du cache
  3127. @end deftypefun
  3128. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  3129. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  3130. owner if needed. At least the target node and the owner have to call the
  3131. function.
  3132. @end deftypefun
  3133. @deftypefun void starpu_mpi_get_data_on_node_detached (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node}, {void (*}@var{callback})(void*), {void *}@var{arg})
  3134. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  3135. owner if needed. At least the target node and the owner have to call the
  3136. function. On reception, the @var{callback} function is called with the
  3137. argument @var{arg}.
  3138. @end deftypefun
  3139. @node Collective Operations
  3140. @subsection Collective Operations
  3141. @deftypefun void starpu_mpi_redux_data (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle})
  3142. Perform a reduction on the given data. All nodes send the data to its
  3143. owner node which will perform a reduction.
  3144. @end deftypefun
  3145. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  3146. Scatter data among processes of the communicator based on the ownership of
  3147. the data. For each data of the array @var{data_handles}, the
  3148. process @var{root} sends the data to the process owning this data.
  3149. Processes receiving data must have valid data handles to receive them.
  3150. On completion of the collective communication, the @var{scallback} function is
  3151. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  3152. called with the argument @var{rarg} on any other process.
  3153. @end deftypefun
  3154. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  3155. Gather data from the different processes of the communicator onto the
  3156. process @var{root}. Each process owning data handle in the array
  3157. @var{data_handles} will send them to the process @var{root}. The
  3158. process @var{root} must have valid data handles to receive the data.
  3159. On completion of the collective communication, the @var{rcallback} function is
  3160. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  3161. called with the argument @var{sarg} on any other process.
  3162. @end deftypefun
  3163. @node Task Bundles
  3164. @section Task Bundles
  3165. @deftp {Data Type} {starpu_task_bundle_t}
  3166. Opaque structure describing a list of tasks that should be scheduled
  3167. on the same worker whenever it's possible. It must be considered as a
  3168. hint given to the scheduler as there is no guarantee that they will be
  3169. executed on the same worker.
  3170. @end deftp
  3171. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  3172. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  3173. @end deftypefun
  3174. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3175. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  3176. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  3177. @end deftypefun
  3178. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  3179. Remove @var{task} from @var{bundle}.
  3180. Of course @var{task} must have been previously inserted @var{bundle}.
  3181. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  3182. @end deftypefun
  3183. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  3184. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  3185. @end deftypefun
  3186. @deftypefun double starpu_task_bundle_expected_length (starpu_task_bundle_t @var{bundle}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3187. Return the expected duration of the entire task bundle in µs.
  3188. @end deftypefun
  3189. @deftypefun double starpu_task_bundle_expected_power (starpu_task_bundle_t @var{bundle}, enum starpu_perfmodel_archtype @var{arch}, unsigned @var{nimpl})
  3190. Return the expected power consumption of the entire task bundle in J.
  3191. @end deftypefun
  3192. @deftypefun double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t @var{bundle}, unsigned @var{memory_node})
  3193. Return the time (in µs) expected to transfer all data used within the bundle.
  3194. @end deftypefun
  3195. @node Task Lists
  3196. @section Task Lists
  3197. @deftp {Data Type} {struct starpu_task_list}
  3198. Stores a double-chained list of tasks
  3199. @end deftp
  3200. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  3201. Initialize a list structure
  3202. @end deftypefun
  3203. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3204. Push a task at the front of a list
  3205. @end deftypefun
  3206. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3207. Push a task at the back of a list
  3208. @end deftypefun
  3209. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  3210. Get the front of the list (without removing it)
  3211. @end deftypefun
  3212. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  3213. Get the back of the list (without removing it)
  3214. @end deftypefun
  3215. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  3216. Test if a list is empty
  3217. @end deftypefun
  3218. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  3219. Remove an element from the list
  3220. @end deftypefun
  3221. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  3222. Remove the element at the front of the list
  3223. @end deftypefun
  3224. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  3225. Remove the element at the back of the list
  3226. @end deftypefun
  3227. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  3228. Get the first task of the list.
  3229. @end deftypefun
  3230. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  3231. Get the end of the list.
  3232. @end deftypefun
  3233. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  3234. Get the next task of the list. This is not erase-safe.
  3235. @end deftypefun
  3236. @node Using Parallel Tasks
  3237. @section Using Parallel Tasks
  3238. These are used by parallel tasks:
  3239. @deftypefun int starpu_combined_worker_get_size (void)
  3240. Return the size of the current combined worker, i.e. the total number of cpus
  3241. running the same task in the case of SPMD parallel tasks, or the total number
  3242. of threads that the task is allowed to start in the case of FORKJOIN parallel
  3243. tasks.
  3244. @end deftypefun
  3245. @deftypefun int starpu_combined_worker_get_rank (void)
  3246. Return the rank of the current thread within the combined worker. Can only be
  3247. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  3248. @end deftypefun
  3249. Most of these are used for schedulers which support parallel tasks.
  3250. @deftypefun unsigned starpu_combined_worker_get_count (void)
  3251. Return the number of different combined workers.
  3252. @end deftypefun
  3253. @deftypefun int starpu_combined_worker_get_id (void)
  3254. Return the identifier of the current combined worker.
  3255. @end deftypefun
  3256. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  3257. Register a new combined worker and get its identifier
  3258. @end deftypefun
  3259. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  3260. Get the description of a combined worker
  3261. @end deftypefun
  3262. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  3263. Variant of starpu_worker_can_execute_task compatible with combined workers
  3264. @end deftypefun
  3265. @deftypefun void starpu_parallel_task_barrier_init ({struct starpu_task* }@var{task}, int @var{workerid})
  3266. Initialise the barrier for the parallel task, and dispatch the task
  3267. between the different combined workers
  3268. @end deftypefun
  3269. @node Scheduling Contexts
  3270. @section Scheduling Contexts
  3271. StarPU permits on one hand grouping workers in combined workers in order to execute a parallel task and on the other hand grouping tasks in bundles that will be executed by a single specified worker.
  3272. In contrast when we group workers in scheduling contexts we submit starpu tasks to them and we schedule them with the policy assigned to the context.
  3273. Scheduling contexts can be created, deleted and modified dynamically.
  3274. @deftypefun unsigned starpu_sched_ctx_create (const char *@var{policy_name}, int *@var{workerids_ctx}, int @var{nworkers_ctx}, const char *@var{sched_ctx_name})
  3275. This function creates a scheduling context which uses the scheduling policy indicated in the first argument and assigns the workers indicated in the second argument to execute the tasks submitted to it.
  3276. The return value represents the identifier of the context that has just been created. It will be further used to indicate the context the tasks will be submitted to. The return value should be at most @code{STARPU_NMAX_SCHED_CTXS}.
  3277. @end deftypefun
  3278. @deftypefun void starpu_sched_ctx_delete (unsigned @var{sched_ctx_id})
  3279. Delete scheduling context @var{sched_ctx_id} and transfer remaining workers to the inheritor scheduling context.
  3280. @end deftypefun
  3281. @deftypefun void starpu_sched_ctx_add_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3282. This function adds dynamically the workers indicated in the first argument to the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3283. @end deftypefun
  3284. @deftypefun void starpu_sched_ctx_remove_workers ({int *}@var{workerids_ctx}, int @var{nworkers_ctx}, unsigned @var{sched_ctx_id})
  3285. This function removes the workers indicated in the first argument from the context indicated in the last argument. The last argument cannot be greater than @code{STARPU_NMAX_SCHED_CTXS}.
  3286. @end deftypefun
  3287. A scheduling context manages a collection of workers that can be memorized using different data structures. Thus, a generic structure is available in order to simplify the choice of its type.
  3288. Only the list data structure is available but further data structures(like tree) implementations are foreseen.
  3289. @deftp {Data Type} {struct starpu_worker_collection}
  3290. @table @asis
  3291. @item @code{void *workerids}
  3292. The workerids managed by the collection
  3293. @item @code{unsigned nworkers}
  3294. The number of workerids
  3295. @item @code{pthread_key_t cursor_key} (optional)
  3296. The cursor needed to iterate the collection (depending on the data structure)
  3297. @item @code{enum starpu_worker_collection_type type}
  3298. The type of structure (currently STARPU_WORKER_LIST is the only one available)
  3299. @item @code{unsigned (*has_next)(struct starpu_worker_collection *workers)}
  3300. Checks if there is a next worker
  3301. @item @code{int (*get_next)(struct starpu_worker_collection *workers)}
  3302. Gets the next worker
  3303. @item @code{int (*add)(struct starpu_worker_collection *workers, int worker)}
  3304. Adds a worker to the collection
  3305. @item @code{int (*remove)(struct starpu_worker_collection *workers, int worker)}
  3306. Removes a worker from the collection
  3307. @item @code{void* (*init)(struct starpu_worker_collection *workers)}
  3308. Initialize the collection
  3309. @item @code{void (*deinit)(struct starpu_worker_collection *workers)}
  3310. Deinitialize the colection
  3311. @item @code{void (*init_cursor)(struct starpu_worker_collection *workers)} (optional)
  3312. Initialize the cursor if there is one
  3313. @item @code{void (*deinit_cursor)(struct starpu_worker_collection *workers)} (optional)
  3314. Deinitialize the cursor if there is one
  3315. @end table
  3316. @end deftp
  3317. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_create_worker_collection (unsigned @var{sched_ctx_id}, enum starpu_worker_collection_type @var{type})
  3318. Create a worker collection of the type indicated by the last parameter for the context specified through the first parameter.
  3319. @end deftypefun
  3320. @deftypefun void starpu_sched_ctx_delete_worker_collection (unsigned @var{sched_ctx_id})
  3321. Delete the worker collection of the specified scheduling context
  3322. @end deftypefun
  3323. @deftypefun struct starpu_worker_collection* starpu_sched_ctx_get_worker_collection (unsigned @var{sched_ctx_id})
  3324. Return the worker collection managed by the indicated context
  3325. @end deftypefun
  3326. @deftypefun void starpu_sched_ctx_set_context (unsigned *@var{sched_ctx_id})
  3327. Set the scheduling context the subsequent tasks will be submitted to
  3328. @end deftypefun
  3329. @deftypefun unsigned starpu_sched_ctx_get_context (void)
  3330. Return the scheduling context the tasks are currently submitted to
  3331. @end deftypefun
  3332. @deftypefun unsigned starpu_sched_ctx_get_nworkers (unsigned @var{sched_ctx_id})
  3333. Return the number of workers managed by the specified contexts
  3334. (Usually needed to verify if it manages any workers or if it should be blocked)
  3335. @end deftypefun
  3336. @deftypefun unsigned starpu_sched_ctx_get_nshared_workers (unsigned @var{sched_ctx_id}, unsigned @var{sched_ctx_id2})
  3337. Return the number of workers shared by two contexts
  3338. @end deftypefun
  3339. @deftypefun int starpu_sched_ctx_set_min_priority (unsigned @var{sched_ctx_id}, int @var{min_prio})
  3340. Defines the minimum task priority level supported by the scheduling
  3341. policy of the given scheduler context. The
  3342. default minimum priority level is the same as the default priority level which
  3343. is 0 by convention. The application may access that value by calling the
  3344. @code{starpu_sched_ctx_get_min_priority} function. This function should only be
  3345. called from the initialization method of the scheduling policy, and should not
  3346. be used directly from the application.
  3347. @end deftypefun
  3348. @deftypefun int starpu_sched_ctx_set_max_priority (unsigned @var{sched_ctx_id}, int @var{max_prio})
  3349. Defines the maximum priority level supported by the scheduling policy of the given scheduler context. The
  3350. default maximum priority level is 1. The application may access that value by
  3351. calling the @code{starpu_sched_ctx_get_max_priority} function. This function should
  3352. only be called from the initialization method of the scheduling policy, and
  3353. should not be used directly from the application.
  3354. @end deftypefun
  3355. @deftypefun int starpu_sched_ctx_get_min_priority (unsigned @var{sched_ctx_id})
  3356. Returns the current minimum priority level supported by the
  3357. scheduling policy of the given scheduler context.
  3358. @end deftypefun
  3359. @deftypefun int starpu_sched_ctx_get_max_priority (unsigned @var{sched_ctx_id})
  3360. Returns the current maximum priority level supported by the
  3361. scheduling policy of the given scheduler context.
  3362. @end deftypefun
  3363. @node Scheduling Policy
  3364. @section Scheduling Policy
  3365. TODO
  3366. While StarPU comes with a variety of scheduling policies (@pxref{Task
  3367. scheduling policy}), it may sometimes be desirable to implement custom
  3368. policies to address specific problems. The API described below allows
  3369. users to write their own scheduling policy.
  3370. @deftp {Data Type} {struct starpu_sched_policy}
  3371. This structure contains all the methods that implement a scheduling policy. An
  3372. application may specify which scheduling strategy in the @code{sched_policy}
  3373. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3374. function. The different fields are:
  3375. @table @asis
  3376. @item @code{void (*init_sched)(unsigned sched_ctx_id)}
  3377. Initialize the scheduling policy.
  3378. @item @code{void (*deinit_sched)(unsigned sched_ctx_id)}
  3379. Cleanup the scheduling policy.
  3380. @item @code{int (*push_task)(struct starpu_task *)}
  3381. Insert a task into the scheduler.
  3382. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  3383. Notify the scheduler that a task was pushed on a given worker. This method is
  3384. called when a task that was explicitely assigned to a worker becomes ready and
  3385. is about to be executed by the worker. This method therefore permits to keep
  3386. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  3387. strategy.
  3388. @item @code{struct starpu_task *(*pop_task)(unsigned sched_ctx_id)} (optional)
  3389. Get a task from the scheduler. The mutex associated to the worker is already
  3390. taken when this method is called. If this method is defined as @code{NULL}, the
  3391. worker will only execute tasks from its local queue. In this case, the
  3392. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3393. assign tasks to the different workers.
  3394. @item @code{struct starpu_task *(*pop_every_task)(unsigned sched_ctx_id)}
  3395. Remove all available tasks from the scheduler (tasks are chained by the means
  3396. of the prev and next fields of the starpu_task structure). The mutex associated
  3397. to the worker is already taken when this method is called. This is currently
  3398. not used.
  3399. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  3400. This method is called every time a task is starting.
  3401. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  3402. This method is called every time a task has been executed.
  3403. @item @code{void (*add_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3404. Initialize scheduling structures corresponding to each worker used by the policy.
  3405. @item @code{void (*remove_workers)(unsigned sched_ctx_id, int *workerids, unsigned nworkers)}
  3406. Deinitialize scheduling structures corresponding to each worker used by the policy.
  3407. @item @code{const char *policy_name} (optional)
  3408. Name of the policy.
  3409. @item @code{const char *policy_description} (optional)
  3410. Description of the policy.
  3411. @end table
  3412. @end deftp
  3413. @deftypefun {struct starpu_sched_policy **} starpu_sched_get_predefined_policies ()
  3414. Return an NULL-terminated array of all the predefined scheduling policies.
  3415. @end deftypefun
  3416. @deftypefun void starpu_sched_ctx_set_policy_data (unsigned @var{sched_ctx_id}, {void *} @var{policy_data})
  3417. Each scheduling policy uses some specific data (queues, variables, additional condition variables).
  3418. It is memorize through a local structure. This function assigns it to a scheduling context.
  3419. @end deftypefun
  3420. @deftypefun void* starpu_sched_ctx_get_policy_data (unsigned @var{sched_ctx_id})
  3421. Returns the policy data previously assigned to a context
  3422. @end deftypefun
  3423. @deftypefun int starpu_sched_set_min_priority (int @var{min_prio})
  3424. Defines the minimum task priority level supported by the scheduling policy. The
  3425. default minimum priority level is the same as the default priority level which
  3426. is 0 by convention. The application may access that value by calling the
  3427. @code{starpu_sched_get_min_priority} function. This function should only be
  3428. called from the initialization method of the scheduling policy, and should not
  3429. be used directly from the application.
  3430. @end deftypefun
  3431. @deftypefun int starpu_sched_set_max_priority (int @var{max_prio})
  3432. Defines the maximum priority level supported by the scheduling policy. The
  3433. default maximum priority level is 1. The application may access that value by
  3434. calling the @code{starpu_sched_get_max_priority} function. This function should
  3435. only be called from the initialization method of the scheduling policy, and
  3436. should not be used directly from the application.
  3437. @end deftypefun
  3438. @deftypefun int starpu_sched_get_min_priority (void)
  3439. Returns the current minimum priority level supported by the
  3440. scheduling policy
  3441. @end deftypefun
  3442. @deftypefun int starpu_sched_get_max_priority (void)
  3443. Returns the current maximum priority level supported by the
  3444. scheduling policy
  3445. @end deftypefun
  3446. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3447. The scheduling policy may put tasks directly into a worker's local queue so
  3448. that it is not always necessary to create its own queue when the local queue
  3449. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  3450. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  3451. a FIFO ordering.
  3452. @end deftypefun
  3453. @deftypefun int starpu_push_task_end ({struct starpu_task} *@var{task})
  3454. This function must be called by a scheduler to notify that the given
  3455. task has just been pushed.
  3456. @end deftypefun
  3457. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  3458. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  3459. @end deftypefun
  3460. @deftypefun double starpu_timing_now (void)
  3461. Return the current date in µs
  3462. @end deftypefun
  3463. @deftypefun uint32_t starpu_task_footprint ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *} @var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3464. Returns the footprint for a given task
  3465. @end deftypefun
  3466. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3467. Returns expected task duration in µs
  3468. @end deftypefun
  3469. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perfmodel_archtype} @var{perf_archtype})
  3470. Returns an estimated speedup factor relative to CPU speed
  3471. @end deftypefun
  3472. @deftypefun double starpu_task_expected_data_transfer_time (unsigned @var{memory_node}, {struct starpu_task *}@var{task})
  3473. Returns expected data transfer time in µs
  3474. @end deftypefun
  3475. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_data_access_mode} @var{mode})
  3476. Predict the transfer time (in µs) to move a handle to a memory node
  3477. @end deftypefun
  3478. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned @var{nimpl})
  3479. Returns expected power consumption in J
  3480. @end deftypefun
  3481. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perfmodel_archtype} @var{arch}, unsigned {nimpl})
  3482. Returns expected conversion time in ms (multiformat interface only)
  3483. @end deftypefun
  3484. @node Running drivers
  3485. @section Running drivers
  3486. @deftypefun int starpu_driver_run ({struct starpu_driver *}@var{d})
  3487. Initialize the given driver, run it until it receives a request to terminate,
  3488. deinitialize it and return 0 on success. It returns -EINVAL if @code{d->type}
  3489. is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_WORKER or
  3490. STARPU_OPENCL_WORKER). This is the same as using the following
  3491. functions: calling @code{starpu_driver_init()}, then calling
  3492. @code{starpu_driver_run_once()} in a loop, and eventually
  3493. @code{starpu_driver_deinit()}.
  3494. @end deftypefun
  3495. @deftypefun int starpu_driver_init (struct starpu_driver *@var{d})
  3496. Initialize the given driver. Returns 0 on success, -EINVAL if
  3497. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3498. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3499. @end deftypefun
  3500. @deftypefun int starpu_driver_run_once (struct starpu_driver *@var{d})
  3501. Run the driver once, then returns 0 on success, -EINVAL if
  3502. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3503. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3504. @end deftypefun
  3505. @deftypefun int starpu_driver_deinit (struct starpu_driver *@var{d})
  3506. Deinitialize the given driver. Returns 0 on success, -EINVAL if
  3507. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  3508. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  3509. @end deftypefun
  3510. @deftypefun void starpu_drivers_request_termination (void)
  3511. Notify all running drivers they should terminate.
  3512. @end deftypefun
  3513. @node Expert mode
  3514. @section Expert mode
  3515. @deftypefun void starpu_wake_all_blocked_workers (void)
  3516. Wake all the workers, so they can inspect data requests and task submissions
  3517. again.
  3518. @end deftypefun
  3519. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  3520. Register a progression hook, to be called when workers are idle.
  3521. @end deftypefun
  3522. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  3523. Unregister a given progression hook.
  3524. @end deftypefun