| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 | /* dtgexc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__2 = 2;/* Subroutine */ int dtgexc_(logical *wantq, logical *wantz, integer *n, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *	q, integer *ldq, doublereal *z__, integer *ldz, integer *ifst, 	integer *ilst, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 	    z_offset, i__1;    /* Local variables */    integer nbf, nbl, here, lwmin;    extern /* Subroutine */ int dtgex2_(logical *, logical *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *, integer *, integer *, integer 	    *, doublereal *, integer *, integer *), xerbla_(char *, integer *);    integer nbnext;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGEXC reorders the generalized real Schur decomposition of a real *//*  matrix pair (A,B) using an orthogonal equivalence transformation *//*                 (A, B) = Q * (A, B) * Z', *//*  so that the diagonal block of (A, B) with row index IFST is moved *//*  to row ILST. *//*  (A, B) must be in generalized real Schur canonical form (as returned *//*  by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 *//*  diagonal blocks. B is upper triangular. *//*  Optionally, the matrices Q and Z of generalized Schur vectors are *//*  updated. *//*         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' *//*         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' *//*  Arguments *//*  ========= *//*  WANTQ   (input) LOGICAL *//*          .TRUE. : update the left transformation matrix Q; *//*          .FALSE.: do not update Q. *//*  WANTZ   (input) LOGICAL *//*          .TRUE. : update the right transformation matrix Z; *//*          .FALSE.: do not update Z. *//*  N       (input) INTEGER *//*          The order of the matrices A and B. N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the matrix A in generalized real Schur canonical *//*          form. *//*          On exit, the updated matrix A, again in generalized *//*          real Schur canonical form. *//*  LDA     (input)  INTEGER *//*          The leading dimension of the array A. LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) *//*          On entry, the matrix B in generalized real Schur canonical *//*          form (A,B). *//*          On exit, the updated matrix B, again in generalized *//*          real Schur canonical form (A,B). *//*  LDB     (input)  INTEGER *//*          The leading dimension of the array B. LDB >= max(1,N). *//*  Q       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) *//*          On entry, if WANTQ = .TRUE., the orthogonal matrix Q. *//*          On exit, the updated matrix Q. *//*          If WANTQ = .FALSE., Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. LDQ >= 1. *//*          If WANTQ = .TRUE., LDQ >= N. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) *//*          On entry, if WANTZ = .TRUE., the orthogonal matrix Z. *//*          On exit, the updated matrix Z. *//*          If WANTZ = .FALSE., Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z. LDZ >= 1. *//*          If WANTZ = .TRUE., LDZ >= N. *//*  IFST    (input/output) INTEGER *//*  ILST    (input/output) INTEGER *//*          Specify the reordering of the diagonal blocks of (A, B). *//*          The block with row index IFST is moved to row ILST, by a *//*          sequence of swapping between adjacent blocks. *//*          On exit, if IFST pointed on entry to the second row of *//*          a 2-by-2 block, it is changed to point to the first row; *//*          ILST always points to the first row of the block in its *//*          final position (which may differ from its input value by *//*          +1 or -1). 1 <= IFST, ILST <= N. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*           =0:  successful exit. *//*           <0:  if INFO = -i, the i-th argument had an illegal value. *//*           =1:  The transformed matrix pair (A, B) would be too far *//*                from generalized Schur form; the problem is ill- *//*                conditioned. (A, B) may have been partially reordered, *//*                and ILST points to the first row of the current *//*                position of the block being moved. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *//*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *//*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and *//*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test input arguments. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    } else if (*ldq < 1 || *wantq && *ldq < max(1,*n)) {	*info = -9;    } else if (*ldz < 1 || *wantz && *ldz < max(1,*n)) {	*info = -11;    } else if (*ifst < 1 || *ifst > *n) {	*info = -12;    } else if (*ilst < 1 || *ilst > *n) {	*info = -13;    }    if (*info == 0) {	if (*n <= 1) {	    lwmin = 1;	} else {	    lwmin = (*n << 2) + 16;	}	work[1] = (doublereal) lwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -15;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTGEXC", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n <= 1) {	return 0;    }/*     Determine the first row of the specified block and find out *//*     if it is 1-by-1 or 2-by-2. */    if (*ifst > 1) {	if (a[*ifst + (*ifst - 1) * a_dim1] != 0.) {	    --(*ifst);	}    }    nbf = 1;    if (*ifst < *n) {	if (a[*ifst + 1 + *ifst * a_dim1] != 0.) {	    nbf = 2;	}    }/*     Determine the first row of the final block *//*     and find out if it is 1-by-1 or 2-by-2. */    if (*ilst > 1) {	if (a[*ilst + (*ilst - 1) * a_dim1] != 0.) {	    --(*ilst);	}    }    nbl = 1;    if (*ilst < *n) {	if (a[*ilst + 1 + *ilst * a_dim1] != 0.) {	    nbl = 2;	}    }    if (*ifst == *ilst) {	return 0;    }    if (*ifst < *ilst) {/*        Update ILST. */	if (nbf == 2 && nbl == 1) {	    --(*ilst);	}	if (nbf == 1 && nbl == 2) {	    ++(*ilst);	}	here = *ifst;L10:/*        Swap with next one below. */	if (nbf == 1 || nbf == 2) {/*           Current block either 1-by-1 or 2-by-2. */	    nbnext = 1;	    if (here + nbf + 1 <= *n) {		if (a[here + nbf + 1 + (here + nbf) * a_dim1] != 0.) {		    nbnext = 2;		}	    }	    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[		    q_offset], ldq, &z__[z_offset], ldz, &here, &nbf, &nbnext, 		     &work[1], lwork, info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    here += nbnext;/*           Test if 2-by-2 block breaks into two 1-by-1 blocks. */	    if (nbf == 2) {		if (a[here + 1 + here * a_dim1] == 0.) {		    nbf = 3;		}	    }	} else {/*           Current block consists of two 1-by-1 blocks, each of which *//*           must be swapped individually. */	    nbnext = 1;	    if (here + 3 <= *n) {		if (a[here + 3 + (here + 2) * a_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here + 1;	    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[		    q_offset], ldq, &z__[z_offset], ldz, &i__1, &c__1, &		    nbnext, &work[1], lwork, info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    if (nbnext == 1) {/*              Swap two 1-by-1 blocks. */		dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, 			 &q[q_offset], ldq, &z__[z_offset], ldz, &here, &c__1, 			 &c__1, &work[1], lwork, info);		if (*info != 0) {		    *ilst = here;		    return 0;		}		++here;	    } else {/*              Recompute NBNEXT in case of 2-by-2 split. */		if (a[here + 2 + (here + 1) * a_dim1] == 0.) {		    nbnext = 1;		}		if (nbnext == 2) {/*                 2-by-2 block did not split. */		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    here, &c__1, &nbnext, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    here += 2;		} else {/*                 2-by-2 block did split. */		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    here, &c__1, &c__1, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    ++here;		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    here, &c__1, &c__1, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    ++here;		}	    }	}	if (here < *ilst) {	    goto L10;	}    } else {	here = *ifst;L20:/*        Swap with next one below. */	if (nbf == 1 || nbf == 2) {/*           Current block either 1-by-1 or 2-by-2. */	    nbnext = 1;	    if (here >= 3) {		if (a[here - 1 + (here - 2) * a_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here - nbnext;	    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[		    q_offset], ldq, &z__[z_offset], ldz, &i__1, &nbnext, &nbf, 		     &work[1], lwork, info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    here -= nbnext;/*           Test if 2-by-2 block breaks into two 1-by-1 blocks. */	    if (nbf == 2) {		if (a[here + 1 + here * a_dim1] == 0.) {		    nbf = 3;		}	    }	} else {/*           Current block consists of two 1-by-1 blocks, each of which *//*           must be swapped individually. */	    nbnext = 1;	    if (here >= 3) {		if (a[here - 1 + (here - 2) * a_dim1] != 0.) {		    nbnext = 2;		}	    }	    i__1 = here - nbnext;	    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[		    q_offset], ldq, &z__[z_offset], ldz, &i__1, &nbnext, &		    c__1, &work[1], lwork, info);	    if (*info != 0) {		*ilst = here;		return 0;	    }	    if (nbnext == 1) {/*              Swap two 1-by-1 blocks. */		dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, 			 &q[q_offset], ldq, &z__[z_offset], ldz, &here, &			nbnext, &c__1, &work[1], lwork, info);		if (*info != 0) {		    *ilst = here;		    return 0;		}		--here;	    } else {/*             Recompute NBNEXT in case of 2-by-2 split. */		if (a[here + (here - 1) * a_dim1] == 0.) {		    nbnext = 1;		}		if (nbnext == 2) {/*                 2-by-2 block did not split. */		    i__1 = here - 1;		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    i__1, &c__2, &c__1, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    here += -2;		} else {/*                 2-by-2 block did split. */		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    here, &c__1, &c__1, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    --here;		    dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &			    here, &c__1, &c__1, &work[1], lwork, info);		    if (*info != 0) {			*ilst = here;			return 0;		    }		    --here;		}	    }	}	if (here > *ilst) {	    goto L20;	}    }    *ilst = here;    work[1] = (doublereal) lwmin;    return 0;/*     End of DTGEXC */} /* dtgexc_ */
 |