| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454 | /* dsytrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b7 = -1.;static integer c__1 = 1;static doublereal c_b19 = 1.;/* Subroutine */ int dsytrs_(char *uplo, integer *n, integer *nrhs, 	doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *	ldb, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1;    doublereal d__1;    /* Local variables */    integer j, k;    doublereal ak, bk;    integer kp;    doublereal akm1, bkm1;    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal akm1k;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    doublereal denom;    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dswap_(integer *, 	    doublereal *, integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYTRS solves a system of linear equations A*X = B with a real *//*  symmetric matrix A using the factorization A = U*D*U**T or *//*  A = L*D*L**T computed by DSYTRF. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the details of the factorization are stored *//*          as an upper or lower triangular matrix. *//*          = 'U':  Upper triangular, form is A = U*D*U**T; *//*          = 'L':  Lower triangular, form is A = L*D*L**T. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The block diagonal matrix D and the multipliers used to *//*          obtain the factor U or L as computed by DSYTRF. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (input) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D *//*          as determined by DSYTRF. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side matrix B. *//*          On exit, the solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSYTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *nrhs == 0) {	return 0;    }    if (upper) {/*        Solve A*X = B, where A = U*D*U'. *//*        First solve U*D*X = B, overwriting B with X. *//*        K is the main loop index, decreasing from N to 1 in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	k = *n;L10:/*        If K < 1, exit from loop. */	if (k < 1) {	    goto L30;	}	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Interchange rows K and IPIV(K). */	    kp = ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }/*           Multiply by inv(U(K)), where U(K) is the transformation *//*           stored in column K of A. */	    i__1 = k - 1;	    dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + 		    b_dim1], ldb, &b[b_dim1 + 1], ldb);/*           Multiply by the inverse of the diagonal block. */	    d__1 = 1. / a[k + k * a_dim1];	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);	    --k;	} else {/*           2 x 2 diagonal block *//*           Interchange rows K-1 and -IPIV(K). */	    kp = -ipiv[k];	    if (kp != k - 1) {		dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }/*           Multiply by inv(U(K)), where U(K) is the transformation *//*           stored in columns K-1 and K of A. */	    i__1 = k - 2;	    dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + 		    b_dim1], ldb, &b[b_dim1 + 1], ldb);	    i__1 = k - 2;	    dger_(&i__1, nrhs, &c_b7, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k - 		    1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);/*           Multiply by the inverse of the diagonal block. */	    akm1k = a[k - 1 + k * a_dim1];	    akm1 = a[k - 1 + (k - 1) * a_dim1] / akm1k;	    ak = a[k + k * a_dim1] / akm1k;	    denom = akm1 * ak - 1.;	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		bkm1 = b[k - 1 + j * b_dim1] / akm1k;		bk = b[k + j * b_dim1] / akm1k;		b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;		b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;/* L20: */	    }	    k += -2;	}	goto L10;L30:/*        Next solve U'*X = B, overwriting B with X. *//*        K is the main loop index, increasing from 1 to N in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	k = 1;L40:/*        If K > N, exit from loop. */	if (k > *n) {	    goto L50;	}	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Multiply by inv(U'(K)), where U(K) is the transformation *//*           stored in column K of A. */	    i__1 = k - 1;	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * 		    a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);/*           Interchange rows K and IPIV(K). */	    kp = ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }	    ++k;	} else {/*           2 x 2 diagonal block *//*           Multiply by inv(U'(K+1)), where U(K+1) is the transformation *//*           stored in columns K and K+1 of A. */	    i__1 = k - 1;	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * 		    a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);	    i__1 = k - 1;	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[(k 		    + 1) * a_dim1 + 1], &c__1, &c_b19, &b[k + 1 + b_dim1], 		    ldb);/*           Interchange rows K and -IPIV(K). */	    kp = -ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }	    k += 2;	}	goto L40;L50:	;    } else {/*        Solve A*X = B, where A = L*D*L'. *//*        First solve L*D*X = B, overwriting B with X. *//*        K is the main loop index, increasing from 1 to N in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	k = 1;L60:/*        If K > N, exit from loop. */	if (k > *n) {	    goto L80;	}	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Interchange rows K and IPIV(K). */	    kp = ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }/*           Multiply by inv(L(K)), where L(K) is the transformation *//*           stored in column K of A. */	    if (k < *n) {		i__1 = *n - k;		dger_(&i__1, nrhs, &c_b7, &a[k + 1 + k * a_dim1], &c__1, &b[k 			+ b_dim1], ldb, &b[k + 1 + b_dim1], ldb);	    }/*           Multiply by the inverse of the diagonal block. */	    d__1 = 1. / a[k + k * a_dim1];	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);	    ++k;	} else {/*           2 x 2 diagonal block *//*           Interchange rows K+1 and -IPIV(K). */	    kp = -ipiv[k];	    if (kp != k + 1) {		dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }/*           Multiply by inv(L(K)), where L(K) is the transformation *//*           stored in columns K and K+1 of A. */	    if (k < *n - 1) {		i__1 = *n - k - 1;		dger_(&i__1, nrhs, &c_b7, &a[k + 2 + k * a_dim1], &c__1, &b[k 			+ b_dim1], ldb, &b[k + 2 + b_dim1], ldb);		i__1 = *n - k - 1;		dger_(&i__1, nrhs, &c_b7, &a[k + 2 + (k + 1) * a_dim1], &c__1, 			 &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);	    }/*           Multiply by the inverse of the diagonal block. */	    akm1k = a[k + 1 + k * a_dim1];	    akm1 = a[k + k * a_dim1] / akm1k;	    ak = a[k + 1 + (k + 1) * a_dim1] / akm1k;	    denom = akm1 * ak - 1.;	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		bkm1 = b[k + j * b_dim1] / akm1k;		bk = b[k + 1 + j * b_dim1] / akm1k;		b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;		b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;/* L70: */	    }	    k += 2;	}	goto L60;L80:/*        Next solve L'*X = B, overwriting B with X. *//*        K is the main loop index, decreasing from N to 1 in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	k = *n;L90:/*        If K < 1, exit from loop. */	if (k < 1) {	    goto L100;	}	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Multiply by inv(L'(K)), where L(K) is the transformation *//*           stored in column K of A. */	    if (k < *n) {		i__1 = *n - k;		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 			ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + 			b_dim1], ldb);	    }/*           Interchange rows K and IPIV(K). */	    kp = ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }	    --k;	} else {/*           2 x 2 diagonal block *//*           Multiply by inv(L'(K-1)), where L(K-1) is the transformation *//*           stored in columns K-1 and K of A. */	    if (k < *n) {		i__1 = *n - k;		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 			ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + 			b_dim1], ldb);		i__1 = *n - k;		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 			ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &c_b19, &b[			k - 1 + b_dim1], ldb);	    }/*           Interchange rows K and -IPIV(K). */	    kp = -ipiv[k];	    if (kp != k) {		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);	    }	    k += -2;	}	goto L90;L100:	;    }    return 0;/*     End of DSYTRS */} /* dsytrs_ */
 |