| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 | /* dsytrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__2 = 2;/* Subroutine */ int dsytrf_(char *uplo, integer *n, doublereal *a, integer *	lda, integer *ipiv, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer j, k, kb, nb, iws;    extern logical lsame_(char *, char *);    integer nbmin, iinfo;    logical upper;    extern /* Subroutine */ int dsytf2_(char *, integer *, doublereal *, 	    integer *, integer *, integer *), xerbla_(char *, integer 	    *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int dlasyf_(char *, integer *, integer *, integer 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYTRF computes the factorization of a real symmetric matrix A using *//*  the Bunch-Kaufman diagonal pivoting method.  The form of the *//*  factorization is *//*     A = U*D*U**T  or  A = L*D*L**T *//*  where U (or L) is a product of permutation and unit upper (lower) *//*  triangular matrices, and D is symmetric and block diagonal with *//*  1-by-1 and 2-by-2 diagonal blocks. *//*  This is the blocked version of the algorithm, calling Level 3 BLAS. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          N-by-N upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading N-by-N lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, the block diagonal matrix D and the multipliers used *//*          to obtain the factor U or L (see below for further details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (output) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D. *//*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were *//*          interchanged and D(k,k) is a 1-by-1 diagonal block. *//*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *//*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *//*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = *//*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *//*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of WORK.  LWORK >=1.  For best performance *//*          LWORK >= N*NB, where NB is the block size returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization *//*                has been completed, but the block diagonal matrix D is *//*                exactly singular, and division by zero will occur if it *//*                is used to solve a system of equations. *//*  Further Details *//*  =============== *//*  If UPLO = 'U', then A = U*D*U', where *//*     U = P(n)*U(n)* ... *P(k)U(k)* ..., *//*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to *//*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 *//*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as *//*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such *//*  that if the diagonal block D(k) is of order s (s = 1 or 2), then *//*             (   I    v    0   )   k-s *//*     U(k) =  (   0    I    0   )   s *//*             (   0    0    I   )   n-k *//*                k-s   s   n-k *//*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). *//*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), *//*  and A(k,k), and v overwrites A(1:k-2,k-1:k). *//*  If UPLO = 'L', then A = L*D*L', where *//*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., *//*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to *//*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 *//*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as *//*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such *//*  that if the diagonal block D(k) is of order s (s = 1 or 2), then *//*             (   I    0     0   )  k-1 *//*     L(k) =  (   0    I     0   )  s *//*             (   0    v     I   )  n-k-s+1 *//*                k-1   s  n-k-s+1 *//*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). *//*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), *//*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    --work;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    lquery = *lwork == -1;    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    } else if (*lwork < 1 && ! lquery) {	*info = -7;    }    if (*info == 0) {/*        Determine the block size */	nb = ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);	lwkopt = *n * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSYTRF", &i__1);	return 0;    } else if (lquery) {	return 0;    }    nbmin = 2;    ldwork = *n;    if (nb > 1 && nb < *n) {	iws = ldwork * nb;	if (*lwork < iws) {/* Computing MAX */	    i__1 = *lwork / ldwork;	    nb = max(i__1,1);/* Computing MAX */	    i__1 = 2, i__2 = ilaenv_(&c__2, "DSYTRF", uplo, n, &c_n1, &c_n1, &		    c_n1);	    nbmin = max(i__1,i__2);	}    } else {	iws = 1;    }    if (nb < nbmin) {	nb = *n;    }    if (upper) {/*        Factorize A as U*D*U' using the upper triangle of A *//*        K is the main loop index, decreasing from N to 1 in steps of *//*        KB, where KB is the number of columns factorized by DLASYF; *//*        KB is either NB or NB-1, or K for the last block */	k = *n;L10:/*        If K < 1, exit from loop */	if (k < 1) {	    goto L40;	}	if (k > nb) {/*           Factorize columns k-kb+1:k of A and use blocked code to *//*           update columns 1:k-kb */	    dlasyf_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1], 		     &ldwork, &iinfo);	} else {/*           Use unblocked code to factorize columns 1:k of A */	    dsytf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);	    kb = k;	}/*        Set INFO on the first occurrence of a zero pivot */	if (*info == 0 && iinfo > 0) {	    *info = iinfo;	}/*        Decrease K and return to the start of the main loop */	k -= kb;	goto L10;    } else {/*        Factorize A as L*D*L' using the lower triangle of A *//*        K is the main loop index, increasing from 1 to N in steps of *//*        KB, where KB is the number of columns factorized by DLASYF; *//*        KB is either NB or NB-1, or N-K+1 for the last block */	k = 1;L20:/*        If K > N, exit from loop */	if (k > *n) {	    goto L40;	}	if (k <= *n - nb) {/*           Factorize columns k:k+kb-1 of A and use blocked code to *//*           update columns k+kb:n */	    i__1 = *n - k + 1;	    dlasyf_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k], 		    &work[1], &ldwork, &iinfo);	} else {/*           Use unblocked code to factorize columns k:n of A */	    i__1 = *n - k + 1;	    dsytf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo);	    kb = *n - k + 1;	}/*        Set INFO on the first occurrence of a zero pivot */	if (*info == 0 && iinfo > 0) {	    *info = iinfo + k - 1;	}/*        Adjust IPIV */	i__1 = k + kb - 1;	for (j = k; j <= i__1; ++j) {	    if (ipiv[j] > 0) {		ipiv[j] = ipiv[j] + k - 1;	    } else {		ipiv[j] = ipiv[j] - k + 1;	    }/* L30: */	}/*        Increase K and return to the start of the main loop */	k += kb;	goto L20;    }L40:    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYTRF */} /* dsytrf_ */
 |