| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 | 
							- /* dsptri.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b11 = -1.;
 
- static doublereal c_b13 = 0.;
 
- /* Subroutine */ int dsptri_(char *uplo, integer *n, doublereal *ap, integer *
 
- 	ipiv, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     doublereal d__;
 
-     integer j, k;
 
-     doublereal t, ak;
 
-     integer kc, kp, kx, kpc, npp;
 
-     doublereal akp1;
 
-     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal temp, akkp1;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *);
 
-     integer kstep;
 
-     extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer kcnext;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPTRI computes the inverse of a real symmetric indefinite matrix */
 
- /*  A in packed storage using the factorization A = U*D*U**T or */
 
- /*  A = L*D*L**T computed by DSPTRF. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the details of the factorization are stored */
 
- /*          as an upper or lower triangular matrix. */
 
- /*          = 'U':  Upper triangular, form is A = U*D*U**T; */
 
- /*          = 'L':  Lower triangular, form is A = L*D*L**T. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the block diagonal matrix D and the multipliers */
 
- /*          used to obtain the factor U or L as computed by DSPTRF, */
 
- /*          stored as a packed triangular matrix. */
 
- /*          On exit, if INFO = 0, the (symmetric) inverse of the original */
 
- /*          matrix, stored as a packed triangular matrix. The j-th column */
 
- /*          of inv(A) is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', */
 
- /*             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          Details of the interchanges and the block structure of D */
 
- /*          as determined by DSPTRF. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
 
- /*               inverse could not be computed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --ipiv;
 
-     --ap;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSPTRI", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Check that the diagonal matrix D is nonsingular. */
 
-     if (upper) {
 
- /*        Upper triangular storage: examine D from bottom to top */
 
- 	kp = *n * (*n + 1) / 2;
 
- 	for (*info = *n; *info >= 1; --(*info)) {
 
- 	    if (ipiv[*info] > 0 && ap[kp] == 0.) {
 
- 		return 0;
 
- 	    }
 
- 	    kp -= *info;
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Lower triangular storage: examine D from top to bottom. */
 
- 	kp = 1;
 
- 	i__1 = *n;
 
- 	for (*info = 1; *info <= i__1; ++(*info)) {
 
- 	    if (ipiv[*info] > 0 && ap[kp] == 0.) {
 
- 		return 0;
 
- 	    }
 
- 	    kp = kp + *n - *info + 1;
 
- /* L20: */
 
- 	}
 
-     }
 
-     *info = 0;
 
-     if (upper) {
 
- /*        Compute inv(A) from the factorization A = U*D*U'. */
 
- /*        K is the main loop index, increasing from 1 to N in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	k = 1;
 
- 	kc = 1;
 
- L30:
 
- /*        If K > N, exit from loop. */
 
- 	if (k > *n) {
 
- 	    goto L50;
 
- 	}
 
- 	kcnext = kc + k;
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Invert the diagonal block. */
 
- 	    ap[kc + k - 1] = 1. / ap[kc + k - 1];
 
- /*           Compute column K of the inverse. */
 
- 	    if (k > 1) {
 
- 		i__1 = k - 1;
 
- 		dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
 
- 		i__1 = k - 1;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
 
- 			ap[kc], &c__1);
 
- 		i__1 = k - 1;
 
- 		ap[kc + k - 1] -= ddot_(&i__1, &work[1], &c__1, &ap[kc], &
 
- 			c__1);
 
- 	    }
 
- 	    kstep = 1;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Invert the diagonal block. */
 
- 	    t = (d__1 = ap[kcnext + k - 1], abs(d__1));
 
- 	    ak = ap[kc + k - 1] / t;
 
- 	    akp1 = ap[kcnext + k] / t;
 
- 	    akkp1 = ap[kcnext + k - 1] / t;
 
- 	    d__ = t * (ak * akp1 - 1.);
 
- 	    ap[kc + k - 1] = akp1 / d__;
 
- 	    ap[kcnext + k] = ak / d__;
 
- 	    ap[kcnext + k - 1] = -akkp1 / d__;
 
- /*           Compute columns K and K+1 of the inverse. */
 
- 	    if (k > 1) {
 
- 		i__1 = k - 1;
 
- 		dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
 
- 		i__1 = k - 1;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
 
- 			ap[kc], &c__1);
 
- 		i__1 = k - 1;
 
- 		ap[kc + k - 1] -= ddot_(&i__1, &work[1], &c__1, &ap[kc], &
 
- 			c__1);
 
- 		i__1 = k - 1;
 
- 		ap[kcnext + k - 1] -= ddot_(&i__1, &ap[kc], &c__1, &ap[kcnext]
 
- , &c__1);
 
- 		i__1 = k - 1;
 
- 		dcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
 
- 		i__1 = k - 1;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &
 
- 			ap[kcnext], &c__1);
 
- 		i__1 = k - 1;
 
- 		ap[kcnext + k] -= ddot_(&i__1, &work[1], &c__1, &ap[kcnext], &
 
- 			c__1);
 
- 	    }
 
- 	    kstep = 2;
 
- 	    kcnext = kcnext + k + 1;
 
- 	}
 
- 	kp = (i__1 = ipiv[k], abs(i__1));
 
- 	if (kp != k) {
 
- /*           Interchange rows and columns K and KP in the leading */
 
- /*           submatrix A(1:k+1,1:k+1) */
 
- 	    kpc = (kp - 1) * kp / 2 + 1;
 
- 	    i__1 = kp - 1;
 
- 	    dswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
 
- 	    kx = kpc + kp - 1;
 
- 	    i__1 = k - 1;
 
- 	    for (j = kp + 1; j <= i__1; ++j) {
 
- 		kx = kx + j - 1;
 
- 		temp = ap[kc + j - 1];
 
- 		ap[kc + j - 1] = ap[kx];
 
- 		ap[kx] = temp;
 
- /* L40: */
 
- 	    }
 
- 	    temp = ap[kc + k - 1];
 
- 	    ap[kc + k - 1] = ap[kpc + kp - 1];
 
- 	    ap[kpc + kp - 1] = temp;
 
- 	    if (kstep == 2) {
 
- 		temp = ap[kc + k + k - 1];
 
- 		ap[kc + k + k - 1] = ap[kc + k + kp - 1];
 
- 		ap[kc + k + kp - 1] = temp;
 
- 	    }
 
- 	}
 
- 	k += kstep;
 
- 	kc = kcnext;
 
- 	goto L30;
 
- L50:
 
- 	;
 
-     } else {
 
- /*        Compute inv(A) from the factorization A = L*D*L'. */
 
- /*        K is the main loop index, increasing from 1 to N in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	npp = *n * (*n + 1) / 2;
 
- 	k = *n;
 
- 	kc = npp;
 
- L60:
 
- /*        If K < 1, exit from loop. */
 
- 	if (k < 1) {
 
- 	    goto L80;
 
- 	}
 
- 	kcnext = kc - (*n - k + 2);
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Invert the diagonal block. */
 
- 	    ap[kc] = 1. / ap[kc];
 
- /*           Compute column K of the inverse. */
 
- 	    if (k < *n) {
 
- 		i__1 = *n - k;
 
- 		dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
 
- 		i__1 = *n - k;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[kc + *n - k + 1], &work[1], &
 
- 			c__1, &c_b13, &ap[kc + 1], &c__1);
 
- 		i__1 = *n - k;
 
- 		ap[kc] -= ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
 
- 	    }
 
- 	    kstep = 1;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Invert the diagonal block. */
 
- 	    t = (d__1 = ap[kcnext + 1], abs(d__1));
 
- 	    ak = ap[kcnext] / t;
 
- 	    akp1 = ap[kc] / t;
 
- 	    akkp1 = ap[kcnext + 1] / t;
 
- 	    d__ = t * (ak * akp1 - 1.);
 
- 	    ap[kcnext] = akp1 / d__;
 
- 	    ap[kc] = ak / d__;
 
- 	    ap[kcnext + 1] = -akkp1 / d__;
 
- /*           Compute columns K-1 and K of the inverse. */
 
- 	    if (k < *n) {
 
- 		i__1 = *n - k;
 
- 		dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
 
- 		i__1 = *n - k;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], 
 
- 			&c__1, &c_b13, &ap[kc + 1], &c__1);
 
- 		i__1 = *n - k;
 
- 		ap[kc] -= ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);
 
- 		i__1 = *n - k;
 
- 		ap[kcnext + 1] -= ddot_(&i__1, &ap[kc + 1], &c__1, &ap[kcnext 
 
- 			+ 2], &c__1);
 
- 		i__1 = *n - k;
 
- 		dcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
 
- 		i__1 = *n - k;
 
- 		dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], 
 
- 			&c__1, &c_b13, &ap[kcnext + 2], &c__1);
 
- 		i__1 = *n - k;
 
- 		ap[kcnext] -= ddot_(&i__1, &work[1], &c__1, &ap[kcnext + 2], &
 
- 			c__1);
 
- 	    }
 
- 	    kstep = 2;
 
- 	    kcnext -= *n - k + 3;
 
- 	}
 
- 	kp = (i__1 = ipiv[k], abs(i__1));
 
- 	if (kp != k) {
 
- /*           Interchange rows and columns K and KP in the trailing */
 
- /*           submatrix A(k-1:n,k-1:n) */
 
- 	    kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
 
- 	    if (kp < *n) {
 
- 		i__1 = *n - kp;
 
- 		dswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
 
- 			c__1);
 
- 	    }
 
- 	    kx = kc + kp - k;
 
- 	    i__1 = kp - 1;
 
- 	    for (j = k + 1; j <= i__1; ++j) {
 
- 		kx = kx + *n - j + 1;
 
- 		temp = ap[kc + j - k];
 
- 		ap[kc + j - k] = ap[kx];
 
- 		ap[kx] = temp;
 
- /* L70: */
 
- 	    }
 
- 	    temp = ap[kc];
 
- 	    ap[kc] = ap[kpc];
 
- 	    ap[kpc] = temp;
 
- 	    if (kstep == 2) {
 
- 		temp = ap[kc - *n + k - 1];
 
- 		ap[kc - *n + k - 1] = ap[kc - *n + kp - 1];
 
- 		ap[kc - *n + kp - 1] = temp;
 
- 	    }
 
- 	}
 
- 	k -= kstep;
 
- 	kc = kcnext;
 
- 	goto L60;
 
- L80:
 
- 	;
 
-     }
 
-     return 0;
 
- /*     End of DSPTRI */
 
- } /* dsptri_ */
 
 
  |