| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 | /* dsbgv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dsbgv_(char *jobz, char *uplo, integer *n, integer *ka, 	integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *	ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 	integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;    /* Local variables */    integer inde;    char vect[1];    extern logical lsame_(char *, char *);    integer iinfo;    logical upper, wantz;    extern /* Subroutine */ int xerbla_(char *, integer *), dpbstf_(	    char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *), dsbgst_(char *, char *, 	     integer *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *), dsterf_(integer *, doublereal *, 	    doublereal *, integer *);    integer indwrk;    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSBGV computes all the eigenvalues, and optionally, the eigenvectors *//*  of a real generalized symmetric-definite banded eigenproblem, of *//*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric *//*  and banded, and B is also positive definite. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangles of A and B are stored; *//*          = 'L':  Lower triangles of A and B are stored. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  KA      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. *//*  KB      (input) INTEGER *//*          The number of superdiagonals of the matrix B if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first ka+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). *//*          On exit, the contents of AB are destroyed. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KA+1. *//*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix B, stored in the first kb+1 rows of the array.  The *//*          j-th column of B is stored in the j-th column of the array BB *//*          as follows: *//*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; *//*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). *//*          On exit, the factor S from the split Cholesky factorization *//*          B = S**T*S, as returned by DPBSTF. *//*  LDBB    (input) INTEGER *//*          The leading dimension of the array BB.  LDBB >= KB+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of *//*          eigenvectors, with the i-th column of Z holding the *//*          eigenvector associated with W(i). The eigenvectors are *//*          normalized so that Z**T*B*Z = I. *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= N. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is: *//*             <= N:  the algorithm failed to converge: *//*                    i off-diagonal elements of an intermediate *//*                    tridiagonal form did not converge to zero; *//*             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF *//*                    returned INFO = i: B is not positive definite. *//*                    The factorization of B could not be completed and *//*                    no eigenvalues or eigenvectors were computed. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    bb_dim1 = *ldbb;    bb_offset = 1 + bb_dim1;    bb -= bb_offset;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    wantz = lsame_(jobz, "V");    upper = lsame_(uplo, "U");    *info = 0;    if (! (wantz || lsame_(jobz, "N"))) {	*info = -1;    } else if (! (upper || lsame_(uplo, "L"))) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*ka < 0) {	*info = -4;    } else if (*kb < 0 || *kb > *ka) {	*info = -5;    } else if (*ldab < *ka + 1) {	*info = -7;    } else if (*ldbb < *kb + 1) {	*info = -9;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -12;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSBGV ", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Form a split Cholesky factorization of B. */    dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);    if (*info != 0) {	*info = *n + *info;	return 0;    }/*     Transform problem to standard eigenvalue problem. */    inde = 1;    indwrk = inde + *n;    dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 	     &z__[z_offset], ldz, &work[indwrk], &iinfo)	    ;/*     Reduce to tridiagonal form. */    if (wantz) {	*(unsigned char *)vect = 'U';    } else {	*(unsigned char *)vect = 'N';    }    dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[	    z_offset], ldz, &work[indwrk], &iinfo);/*     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR. */    if (! wantz) {	dsterf_(n, &w[1], &work[inde], info);    } else {	dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[		indwrk], info);    }    return 0;/*     End of DSBGV */} /* dsbgv_ */
 |