| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 | 
							- /* dpftrs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b10 = 1.;
 
- /* Subroutine */ int dpftrs_(char *transr, char *uplo, integer *n, integer *
 
- 	nrhs, doublereal *a, doublereal *b, integer *ldb, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     logical normaltransr;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dtfsm_(char *, char *, char *, char *, char *, 
 
- 	     integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     logical lower;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPFTRS solves a system of linear equations A*X = B with a symmetric */
 
- /*  positive definite matrix A using the Cholesky factorization */
 
- /*  A = U**T*U or A = L*L**T computed by DPFTRF. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TRANSR    (input) CHARACTER */
 
- /*          = 'N':  The Normal TRANSR of RFP A is stored; */
 
- /*          = 'T':  The Transpose TRANSR of RFP A is stored. */
 
- /*  UPLO    (input) CHARACTER */
 
- /*          = 'U':  Upper triangle of RFP A is stored; */
 
- /*          = 'L':  Lower triangle of RFP A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ). */
 
- /*          The triangular factor U or L from the Cholesky factorization */
 
- /*          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF. */
 
- /*          See note below for more details about RFP A. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the right hand side matrix B. */
 
- /*          On exit, the solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Notes */
 
- /*  ===== */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  even. We give an example where N = 6. */
 
- /*      AP is Upper             AP is Lower */
 
- /*   00 01 02 03 04 05       00 */
 
- /*      11 12 13 14 15       10 11 */
 
- /*         22 23 24 25       20 21 22 */
 
- /*            33 34 35       30 31 32 33 */
 
- /*               44 45       40 41 42 43 44 */
 
- /*                  55       50 51 52 53 54 55 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 
- /*  the transpose of the first three columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 
- /*  the transpose of the last three columns of AP lower. */
 
- /*  This covers the case N even and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        03 04 05                33 43 53 */
 
- /*        13 14 15                00 44 54 */
 
- /*        23 24 25                10 11 55 */
 
- /*        33 34 35                20 21 22 */
 
- /*        00 44 45                30 31 32 */
 
- /*        01 11 55                40 41 42 */
 
- /*        02 12 22                50 51 52 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 
- /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 
- /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  odd. We give an example where N = 5. */
 
- /*     AP is Upper                 AP is Lower */
 
- /*   00 01 02 03 04              00 */
 
- /*      11 12 13 14              10 11 */
 
- /*         22 23 24              20 21 22 */
 
- /*            33 34              30 31 32 33 */
 
- /*               44              40 41 42 43 44 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 
- /*  the transpose of the first two columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 
- /*  the transpose of the last two columns of AP lower. */
 
- /*  This covers the case N odd and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        02 03 04                00 33 43 */
 
- /*        12 13 14                10 11 44 */
 
- /*        22 23 24                20 21 22 */
 
- /*        00 33 34                30 31 32 */
 
- /*        01 11 44                40 41 42 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     02 12 22 00 01             00 10 20 30 40 50 */
 
- /*     03 13 23 33 11             33 11 21 31 41 51 */
 
- /*     04 14 24 34 44             43 44 22 32 42 52 */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     normaltransr = lsame_(transr, "N");
 
-     lower = lsame_(uplo, "L");
 
-     if (! normaltransr && ! lsame_(transr, "T")) {
 
- 	*info = -1;
 
-     } else if (! lower && ! lsame_(uplo, "U")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPFTRS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *nrhs == 0) {
 
- 	return 0;
 
-     }
 
- /*     start execution: there are two triangular solves */
 
-     if (lower) {
 
- 	dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset], 
 
- 		ldb);
 
- 	dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset], 
 
- 		ldb);
 
-     } else {
 
- 	dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset], 
 
- 		ldb);
 
- 	dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset], 
 
- 		ldb);
 
-     }
 
-     return 0;
 
- /*     End of DPFTRS */
 
- } /* dpftrs_ */
 
 
  |