| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | 
							- /* dpftri.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b11 = 1.;
 
- /* Subroutine */ int dpftri_(char *transr, char *uplo, integer *n, doublereal 
 
- 	*a, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer k, n1, n2;
 
-     logical normaltransr;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical lower;
 
-     extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	     integer *), xerbla_(char *, integer *);
 
-     logical nisodd;
 
-     extern /* Subroutine */ int dlauum_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *), dtftri_(char *, char *, char *, 
 
- 	    integer *, doublereal *, integer *);
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPFTRI computes the inverse of a (real) symmetric positive definite */
 
- /*  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
 
- /*  computed by DPFTRF. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  TRANSR    (input) CHARACTER */
 
- /*          = 'N':  The Normal TRANSR of RFP A is stored; */
 
- /*          = 'T':  The Transpose TRANSR of RFP A is stored. */
 
- /*  UPLO    (input) CHARACTER */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ) */
 
- /*          On entry, the symmetric matrix A in RFP format. RFP format is */
 
- /*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
 
- /*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
 
- /*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
 
- /*          the transpose of RFP A as defined when */
 
- /*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
 
- /*          follows: If UPLO = 'U' the RFP A contains the nt elements of */
 
- /*          upper packed A. If UPLO = 'L' the RFP A contains the elements */
 
- /*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
 
- /*          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
 
- /*          is odd. See the Note below for more details. */
 
- /*          On exit, the symmetric inverse of the original matrix, in the */
 
- /*          same storage format. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the (i,i) element of the factor U or L is */
 
- /*                zero, and the inverse could not be computed. */
 
- /*  Notes */
 
- /*  ===== */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  even. We give an example where N = 6. */
 
- /*      AP is Upper             AP is Lower */
 
- /*   00 01 02 03 04 05       00 */
 
- /*      11 12 13 14 15       10 11 */
 
- /*         22 23 24 25       20 21 22 */
 
- /*            33 34 35       30 31 32 33 */
 
- /*               44 45       40 41 42 43 44 */
 
- /*                  55       50 51 52 53 54 55 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 
- /*  the transpose of the first three columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 
- /*  the transpose of the last three columns of AP lower. */
 
- /*  This covers the case N even and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        03 04 05                33 43 53 */
 
- /*        13 14 15                00 44 54 */
 
- /*        23 24 25                10 11 55 */
 
- /*        33 34 35                20 21 22 */
 
- /*        00 44 45                30 31 32 */
 
- /*        01 11 55                40 41 42 */
 
- /*        02 12 22                50 51 52 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 
- /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 
- /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  odd. We give an example where N = 5. */
 
- /*     AP is Upper                 AP is Lower */
 
- /*   00 01 02 03 04              00 */
 
- /*      11 12 13 14              10 11 */
 
- /*         22 23 24              20 21 22 */
 
- /*            33 34              30 31 32 33 */
 
- /*               44              40 41 42 43 44 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 
- /*  the transpose of the first two columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 
- /*  the transpose of the last two columns of AP lower. */
 
- /*  This covers the case N odd and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        02 03 04                00 33 43 */
 
- /*        12 13 14                10 11 44 */
 
- /*        22 23 24                20 21 22 */
 
- /*        00 33 34                30 31 32 */
 
- /*        01 11 44                40 41 42 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     02 12 22 00 01             00 10 20 30 40 50 */
 
- /*     03 13 23 33 11             33 11 21 31 41 51 */
 
- /*     04 14 24 34 44             43 44 22 32 42 52 */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     *info = 0;
 
-     normaltransr = lsame_(transr, "N");
 
-     lower = lsame_(uplo, "L");
 
-     if (! normaltransr && ! lsame_(transr, "T")) {
 
- 	*info = -1;
 
-     } else if (! lower && ! lsame_(uplo, "U")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPFTRI", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Invert the triangular Cholesky factor U or L. */
 
-     dtftri_(transr, uplo, "N", n, a, info);
 
-     if (*info > 0) {
 
- 	return 0;
 
-     }
 
- /*     If N is odd, set NISODD = .TRUE. */
 
- /*     If N is even, set K = N/2 and NISODD = .FALSE. */
 
-     if (*n % 2 == 0) {
 
- 	k = *n / 2;
 
- 	nisodd = FALSE_;
 
-     } else {
 
- 	nisodd = TRUE_;
 
-     }
 
- /*     Set N1 and N2 depending on LOWER */
 
-     if (lower) {
 
- 	n2 = *n / 2;
 
- 	n1 = *n - n2;
 
-     } else {
 
- 	n1 = *n / 2;
 
- 	n2 = *n - n1;
 
-     }
 
- /*     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or */
 
- /*     inv(L)^C*inv(L). There are eight cases. */
 
-     if (nisodd) {
 
- /*        N is odd */
 
- 	if (normaltransr) {
 
- /*           N is odd and TRANSR = 'N' */
 
- 	    if (lower) {
 
- /*              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) */
 
- /*              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) */
 
- /*              T1 -> a(0), T2 -> a(n), S -> a(N1) */
 
- 		dlauum_("L", &n1, a, n, info);
 
- 		dsyrk_("L", "T", &n1, &n2, &c_b11, &a[n1], n, &c_b11, a, n);
 
- 		dtrmm_("L", "U", "N", "N", &n2, &n1, &c_b11, &a[*n], n, &a[n1]
 
- , n);
 
- 		dlauum_("U", &n2, &a[*n], n, info);
 
- 	    } else {
 
- /*              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) */
 
- /*              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) */
 
- /*              T1 -> a(N2), T2 -> a(N1), S -> a(0) */
 
- 		dlauum_("L", &n1, &a[n2], n, info);
 
- 		dsyrk_("L", "N", &n1, &n2, &c_b11, a, n, &c_b11, &a[n2], n);
 
- 		dtrmm_("R", "U", "T", "N", &n1, &n2, &c_b11, &a[n1], n, a, n);
 
- 		dlauum_("U", &n2, &a[n1], n, info);
 
- 	    }
 
- 	} else {
 
- /*           N is odd and TRANSR = 'T' */
 
- 	    if (lower) {
 
- /*              SRPA for LOWER, TRANSPOSE, and N is odd */
 
- /*              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) */
 
- 		dlauum_("U", &n1, a, &n1, info);
 
- 		dsyrk_("U", "N", &n1, &n2, &c_b11, &a[n1 * n1], &n1, &c_b11, 
 
- 			a, &n1);
 
- 		dtrmm_("R", "L", "N", "N", &n1, &n2, &c_b11, &a[1], &n1, &a[
 
- 			n1 * n1], &n1);
 
- 		dlauum_("L", &n2, &a[1], &n1, info);
 
- 	    } else {
 
- /*              SRPA for UPPER, TRANSPOSE, and N is odd */
 
- /*              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) */
 
- 		dlauum_("U", &n1, &a[n2 * n2], &n2, info);
 
- 		dsyrk_("U", "T", &n1, &n2, &c_b11, a, &n2, &c_b11, &a[n2 * n2]
 
- , &n2);
 
- 		dtrmm_("L", "L", "T", "N", &n2, &n1, &c_b11, &a[n1 * n2], &n2, 
 
- 			 a, &n2);
 
- 		dlauum_("L", &n2, &a[n1 * n2], &n2, info);
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        N is even */
 
- 	if (normaltransr) {
 
- /*           N is even and TRANSR = 'N' */
 
- 	    if (lower) {
 
- /*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
 
- /*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
 
- /*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */
 
- 		i__1 = *n + 1;
 
- 		dlauum_("L", &k, &a[1], &i__1, info);
 
- 		i__1 = *n + 1;
 
- 		i__2 = *n + 1;
 
- 		dsyrk_("L", "T", &k, &k, &c_b11, &a[k + 1], &i__1, &c_b11, &a[
 
- 			1], &i__2);
 
- 		i__1 = *n + 1;
 
- 		i__2 = *n + 1;
 
- 		dtrmm_("L", "U", "N", "N", &k, &k, &c_b11, a, &i__1, &a[k + 1]
 
- , &i__2);
 
- 		i__1 = *n + 1;
 
- 		dlauum_("U", &k, a, &i__1, info);
 
- 	    } else {
 
- /*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
 
- /*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
 
- /*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */
 
- 		i__1 = *n + 1;
 
- 		dlauum_("L", &k, &a[k + 1], &i__1, info);
 
- 		i__1 = *n + 1;
 
- 		i__2 = *n + 1;
 
- 		dsyrk_("L", "N", &k, &k, &c_b11, a, &i__1, &c_b11, &a[k + 1], 
 
- 			&i__2);
 
- 		i__1 = *n + 1;
 
- 		i__2 = *n + 1;
 
- 		dtrmm_("R", "U", "T", "N", &k, &k, &c_b11, &a[k], &i__1, a, &
 
- 			i__2);
 
- 		i__1 = *n + 1;
 
- 		dlauum_("U", &k, &a[k], &i__1, info);
 
- 	    }
 
- 	} else {
 
- /*           N is even and TRANSR = 'T' */
 
- 	    if (lower) {
 
- /*              SRPA for LOWER, TRANSPOSE, and N is even (see paper) */
 
- /*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), */
 
- /*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
 
- 		dlauum_("U", &k, &a[k], &k, info);
 
- 		dsyrk_("U", "N", &k, &k, &c_b11, &a[k * (k + 1)], &k, &c_b11, 
 
- 			&a[k], &k);
 
- 		dtrmm_("R", "L", "N", "N", &k, &k, &c_b11, a, &k, &a[k * (k + 
 
- 			1)], &k);
 
- 		dlauum_("L", &k, a, &k, info);
 
- 	    } else {
 
- /*              SRPA for UPPER, TRANSPOSE, and N is even (see paper) */
 
- /*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0), */
 
- /*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
 
- 		dlauum_("U", &k, &a[k * (k + 1)], &k, info);
 
- 		dsyrk_("U", "T", &k, &k, &c_b11, a, &k, &c_b11, &a[k * (k + 1)
 
- 			], &k);
 
- 		dtrmm_("L", "L", "T", "N", &k, &k, &c_b11, &a[k * k], &k, a, &
 
- 			k);
 
- 		dlauum_("L", &k, &a[k * k], &k, info);
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DPFTRI */
 
- } /* dpftri_ */
 
 
  |