| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603 | /* dlasq2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__2 = 2;static integer c__10 = 10;static integer c__3 = 3;static integer c__4 = 4;static integer c__11 = 11;/* Subroutine */ int dlasq2_(integer *n, doublereal *z__, integer *info){    /* System generated locals */    integer i__1, i__2, i__3;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal d__, e, g;    integer k;    doublereal s, t;    integer i0, i4, n0;    doublereal dn;    integer pp;    doublereal dn1, dn2, dee, eps, tau, tol;    integer ipn4;    doublereal tol2;    logical ieee;    integer nbig;    doublereal dmin__, emin, emax;    integer kmin, ndiv, iter;    doublereal qmin, temp, qmax, zmax;    integer splt;    doublereal dmin1, dmin2;    integer nfail;    doublereal desig, trace, sigma;    integer iinfo, ttype;    extern /* Subroutine */ int dlasq3_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *, integer *, logical *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *);    extern doublereal dlamch_(char *);    doublereal deemin;    integer iwhila, iwhilb;    doublereal oldemn, safmin;    extern /* Subroutine */ int xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 	    integer *);/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- *//*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- *//*  -- Berkeley                                                        -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASQ2 computes all the eigenvalues of the symmetric positive *//*  definite tridiagonal matrix associated with the qd array Z to high *//*  relative accuracy are computed to high relative accuracy, in the *//*  absence of denormalization, underflow and overflow. *//*  To see the relation of Z to the tridiagonal matrix, let L be a *//*  unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and *//*  let U be an upper bidiagonal matrix with 1's above and diagonal *//*  Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the *//*  symmetric tridiagonal to which it is similar. *//*  Note : DLASQ2 defines a logical variable, IEEE, which is true *//*  on machines which follow ieee-754 floating-point standard in their *//*  handling of infinities and NaNs, and false otherwise. This variable *//*  is passed to DLASQ3. *//*  Arguments *//*  ========= *//*  N     (input) INTEGER *//*        The number of rows and columns in the matrix. N >= 0. *//*  Z     (input/output) DOUBLE PRECISION array, dimension ( 4*N ) *//*        On entry Z holds the qd array. On exit, entries 1 to N hold *//*        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the *//*        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If *//*        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) *//*        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of *//*        shifts that failed. *//*  INFO  (output) INTEGER *//*        = 0: successful exit *//*        < 0: if the i-th argument is a scalar and had an illegal *//*             value, then INFO = -i, if the i-th argument is an *//*             array and the j-entry had an illegal value, then *//*             INFO = -(i*100+j) *//*        > 0: the algorithm failed *//*              = 1, a split was marked by a positive value in E *//*              = 2, current block of Z not diagonalized after 30*N *//*                   iterations (in inner while loop) *//*              = 3, termination criterion of outer while loop not met *//*                   (program created more than N unreduced blocks) *//*  Further Details *//*  =============== *//*  Local Variables: I0:N0 defines a current unreduced segment of Z. *//*  The shifts are accumulated in SIGMA. Iteration count is in ITER. *//*  Ping-pong is controlled by PP (alternates between 0 and 1). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments. *//*     (in case DLASQ2 is not called by DLASQ1) */    /* Parameter adjustments */    --z__;    /* Function Body */    *info = 0;    eps = dlamch_("Precision");    safmin = dlamch_("Safe minimum");    tol = eps * 100.;/* Computing 2nd power */    d__1 = tol;    tol2 = d__1 * d__1;    if (*n < 0) {	*info = -1;	xerbla_("DLASQ2", &c__1);	return 0;    } else if (*n == 0) {	return 0;    } else if (*n == 1) {/*        1-by-1 case. */	if (z__[1] < 0.) {	    *info = -201;	    xerbla_("DLASQ2", &c__2);	}	return 0;    } else if (*n == 2) {/*        2-by-2 case. */	if (z__[2] < 0. || z__[3] < 0.) {	    *info = -2;	    xerbla_("DLASQ2", &c__2);	    return 0;	} else if (z__[3] > z__[1]) {	    d__ = z__[3];	    z__[3] = z__[1];	    z__[1] = d__;	}	z__[5] = z__[1] + z__[2] + z__[3];	if (z__[2] > z__[3] * tol2) {	    t = (z__[1] - z__[3] + z__[2]) * .5;	    s = z__[3] * (z__[2] / t);	    if (s <= t) {		s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));	    } else {		s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));	    }	    t = z__[1] + (s + z__[2]);	    z__[3] *= z__[1] / t;	    z__[1] = t;	}	z__[2] = z__[3];	z__[6] = z__[2] + z__[1];	return 0;    }/*     Check for negative data and compute sums of q's and e's. */    z__[*n * 2] = 0.;    emin = z__[2];    qmax = 0.;    zmax = 0.;    d__ = 0.;    e = 0.;    i__1 = *n - 1 << 1;    for (k = 1; k <= i__1; k += 2) {	if (z__[k] < 0.) {	    *info = -(k + 200);	    xerbla_("DLASQ2", &c__2);	    return 0;	} else if (z__[k + 1] < 0.) {	    *info = -(k + 201);	    xerbla_("DLASQ2", &c__2);	    return 0;	}	d__ += z__[k];	e += z__[k + 1];/* Computing MAX */	d__1 = qmax, d__2 = z__[k];	qmax = max(d__1,d__2);/* Computing MIN */	d__1 = emin, d__2 = z__[k + 1];	emin = min(d__1,d__2);/* Computing MAX */	d__1 = max(qmax,zmax), d__2 = z__[k + 1];	zmax = max(d__1,d__2);/* L10: */    }    if (z__[(*n << 1) - 1] < 0.) {	*info = -((*n << 1) + 199);	xerbla_("DLASQ2", &c__2);	return 0;    }    d__ += z__[(*n << 1) - 1];/* Computing MAX */    d__1 = qmax, d__2 = z__[(*n << 1) - 1];    qmax = max(d__1,d__2);    zmax = max(qmax,zmax);/*     Check for diagonality. */    if (e == 0.) {	i__1 = *n;	for (k = 2; k <= i__1; ++k) {	    z__[k] = z__[(k << 1) - 1];/* L20: */	}	dlasrt_("D", n, &z__[1], &iinfo);	z__[(*n << 1) - 1] = d__;	return 0;    }    trace = d__ + e;/*     Check for zero data. */    if (trace == 0.) {	z__[(*n << 1) - 1] = 0.;	return 0;    }/*     Check whether the machine is IEEE conformable. */    ieee = ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2, 	     &c__3, &c__4) == 1;/*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */    for (k = *n << 1; k >= 2; k += -2) {	z__[k * 2] = 0.;	z__[(k << 1) - 1] = z__[k];	z__[(k << 1) - 2] = 0.;	z__[(k << 1) - 3] = z__[k - 1];/* L30: */    }    i0 = 1;    n0 = *n;/*     Reverse the qd-array, if warranted. */    if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) {	ipn4 = i0 + n0 << 2;	i__1 = i0 + n0 - 1 << 1;	for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {	    temp = z__[i4 - 3];	    z__[i4 - 3] = z__[ipn4 - i4 - 3];	    z__[ipn4 - i4 - 3] = temp;	    temp = z__[i4 - 1];	    z__[i4 - 1] = z__[ipn4 - i4 - 5];	    z__[ipn4 - i4 - 5] = temp;/* L40: */	}    }/*     Initial split checking via dqd and Li's test. */    pp = 0;    for (k = 1; k <= 2; ++k) {	d__ = z__[(n0 << 2) + pp - 3];	i__1 = (i0 << 2) + pp;	for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {	    if (z__[i4 - 1] <= tol2 * d__) {		z__[i4 - 1] = -0.;		d__ = z__[i4 - 3];	    } else {		d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));	    }/* L50: */	}/*        dqd maps Z to ZZ plus Li's test. */	emin = z__[(i0 << 2) + pp + 1];	d__ = z__[(i0 << 2) + pp - 3];	i__1 = (n0 - 1 << 2) + pp;	for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {	    z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];	    if (z__[i4 - 1] <= tol2 * d__) {		z__[i4 - 1] = -0.;		z__[i4 - (pp << 1) - 2] = d__;		z__[i4 - (pp << 1)] = 0.;		d__ = z__[i4 + 1];	    } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && 		    safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {		temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];		z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;		d__ *= temp;	    } else {		z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (			pp << 1) - 2]);		d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);	    }/* Computing MIN */	    d__1 = emin, d__2 = z__[i4 - (pp << 1)];	    emin = min(d__1,d__2);/* L60: */	}	z__[(n0 << 2) - pp - 2] = d__;/*        Now find qmax. */	qmax = z__[(i0 << 2) - pp - 2];	i__1 = (n0 << 2) - pp - 2;	for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {/* Computing MAX */	    d__1 = qmax, d__2 = z__[i4];	    qmax = max(d__1,d__2);/* L70: */	}/*        Prepare for the next iteration on K. */	pp = 1 - pp;/* L80: */    }/*     Initialise variables to pass to DLASQ3. */    ttype = 0;    dmin1 = 0.;    dmin2 = 0.;    dn = 0.;    dn1 = 0.;    dn2 = 0.;    g = 0.;    tau = 0.;    iter = 2;    nfail = 0;    ndiv = n0 - i0 << 1;    i__1 = *n + 1;    for (iwhila = 1; iwhila <= i__1; ++iwhila) {	if (n0 < 1) {	    goto L170;	}/*        While array unfinished do *//*        E(N0) holds the value of SIGMA when submatrix in I0:N0 *//*        splits from the rest of the array, but is negated. */	desig = 0.;	if (n0 == *n) {	    sigma = 0.;	} else {	    sigma = -z__[(n0 << 2) - 1];	}	if (sigma < 0.) {	    *info = 1;	    return 0;	}/*        Find last unreduced submatrix's top index I0, find QMAX and *//*        EMIN. Find Gershgorin-type bound if Q's much greater than E's. */	emax = 0.;	if (n0 > i0) {	    emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1));	} else {	    emin = 0.;	}	qmin = z__[(n0 << 2) - 3];	qmax = qmin;	for (i4 = n0 << 2; i4 >= 8; i4 += -4) {	    if (z__[i4 - 5] <= 0.) {		goto L100;	    }	    if (qmin >= emax * 4.) {/* Computing MIN */		d__1 = qmin, d__2 = z__[i4 - 3];		qmin = min(d__1,d__2);/* Computing MAX */		d__1 = emax, d__2 = z__[i4 - 5];		emax = max(d__1,d__2);	    }/* Computing MAX */	    d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];	    qmax = max(d__1,d__2);/* Computing MIN */	    d__1 = emin, d__2 = z__[i4 - 5];	    emin = min(d__1,d__2);/* L90: */	}	i4 = 4;L100:	i0 = i4 / 4;	pp = 0;	if (n0 - i0 > 1) {	    dee = z__[(i0 << 2) - 3];	    deemin = dee;	    kmin = i0;	    i__2 = (n0 << 2) - 3;	    for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {		dee = z__[i4] * (dee / (dee + z__[i4 - 2]));		if (dee <= deemin) {		    deemin = dee;		    kmin = (i4 + 3) / 4;		}/* L110: */	    }	    if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * 		    .5) {		ipn4 = i0 + n0 << 2;		pp = 2;		i__2 = i0 + n0 - 1 << 1;		for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {		    temp = z__[i4 - 3];		    z__[i4 - 3] = z__[ipn4 - i4 - 3];		    z__[ipn4 - i4 - 3] = temp;		    temp = z__[i4 - 2];		    z__[i4 - 2] = z__[ipn4 - i4 - 2];		    z__[ipn4 - i4 - 2] = temp;		    temp = z__[i4 - 1];		    z__[i4 - 1] = z__[ipn4 - i4 - 5];		    z__[ipn4 - i4 - 5] = temp;		    temp = z__[i4];		    z__[i4] = z__[ipn4 - i4 - 4];		    z__[ipn4 - i4 - 4] = temp;/* L120: */		}	    }	}/*        Put -(initial shift) into DMIN. *//* Computing MAX */	d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);	dmin__ = -max(d__1,d__2);/*        Now I0:N0 is unreduced. *//*        PP = 0 for ping, PP = 1 for pong. *//*        PP = 2 indicates that flipping was applied to the Z array and *//*               and that the tests for deflation upon entry in DLASQ3 *//*               should not be performed. */	nbig = (n0 - i0 + 1) * 30;	i__2 = nbig;	for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {	    if (i0 > n0) {		goto L150;	    }/*           While submatrix unfinished take a good dqds step. */	    dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &		    nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &		    dn1, &dn2, &g, &tau);	    pp = 1 - pp;/*           When EMIN is very small check for splits. */	    if (pp == 0 && n0 - i0 >= 3) {		if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *			 sigma) {		    splt = i0 - 1;		    qmax = z__[(i0 << 2) - 3];		    emin = z__[(i0 << 2) - 1];		    oldemn = z__[i0 * 4];		    i__3 = n0 - 3 << 2;		    for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {			if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= 				tol2 * sigma) {			    z__[i4 - 1] = -sigma;			    splt = i4 / 4;			    qmax = 0.;			    emin = z__[i4 + 3];			    oldemn = z__[i4 + 4];			} else {/* Computing MAX */			    d__1 = qmax, d__2 = z__[i4 + 1];			    qmax = max(d__1,d__2);/* Computing MIN */			    d__1 = emin, d__2 = z__[i4 - 1];			    emin = min(d__1,d__2);/* Computing MIN */			    d__1 = oldemn, d__2 = z__[i4];			    oldemn = min(d__1,d__2);			}/* L130: */		    }		    z__[(n0 << 2) - 1] = emin;		    z__[n0 * 4] = oldemn;		    i0 = splt + 1;		}	    }/* L140: */	}	*info = 2;	return 0;/*        end IWHILB */L150:/* L160: */	;    }    *info = 3;    return 0;/*     end IWHILA */L170:/*     Move q's to the front. */    i__1 = *n;    for (k = 2; k <= i__1; ++k) {	z__[k] = z__[(k << 2) - 3];/* L180: */    }/*     Sort and compute sum of eigenvalues. */    dlasrt_("D", n, &z__[1], &iinfo);    e = 0.;    for (k = *n; k >= 1; --k) {	e += z__[k];/* L190: */    }/*     Store trace, sum(eigenvalues) and information on performance. */    z__[(*n << 1) + 1] = trace;    z__[(*n << 1) + 2] = e;    z__[(*n << 1) + 3] = (doublereal) iter;/* Computing 2nd power */    i__1 = *n;    z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);    z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter;    return 0;/*     End of DLASQ2 */} /* dlasq2_ */
 |