| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | 
							- /* dlasd0.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__0 = 0;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int dlasd0_(integer *n, integer *sqre, doublereal *d__, 
 
- 	doublereal *e, doublereal *u, integer *ldu, doublereal *vt, integer *
 
- 	ldvt, integer *smlsiz, integer *iwork, doublereal *work, integer *
 
- 	info)
 
- {
 
-     /* System generated locals */
 
-     integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
 
-     /* Builtin functions */
 
-     integer pow_ii(integer *, integer *);
 
-     /* Local variables */
 
-     integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf, iwk, 
 
- 	    lvl, ndb1, nlp1, nrp1;
 
-     doublereal beta;
 
-     integer idxq, nlvl;
 
-     doublereal alpha;
 
-     integer inode, ndiml, idxqc, ndimr, itemp, sqrei;
 
-     extern /* Subroutine */ int dlasd1_(integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, integer *, integer *, integer *, doublereal *, 
 
- 	    integer *), dlasdq_(char *, integer *, integer *, integer *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dlasdt_(integer *, integer *, 
 
- 	    integer *, integer *, integer *, integer *, integer *), xerbla_(
 
- 	    char *, integer *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  Using a divide and conquer approach, DLASD0 computes the singular */
 
- /*  value decomposition (SVD) of a real upper bidiagonal N-by-M */
 
- /*  matrix B with diagonal D and offdiagonal E, where M = N + SQRE. */
 
- /*  The algorithm computes orthogonal matrices U and VT such that */
 
- /*  B = U * S * VT. The singular values S are overwritten on D. */
 
- /*  A related subroutine, DLASDA, computes only the singular values, */
 
- /*  and optionally, the singular vectors in compact form. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N      (input) INTEGER */
 
- /*         On entry, the row dimension of the upper bidiagonal matrix. */
 
- /*         This is also the dimension of the main diagonal array D. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         Specifies the column dimension of the bidiagonal matrix. */
 
- /*         = 0: The bidiagonal matrix has column dimension M = N; */
 
- /*         = 1: The bidiagonal matrix has column dimension M = N+1; */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*         On entry D contains the main diagonal of the bidiagonal */
 
- /*         matrix. */
 
- /*         On exit D, if INFO = 0, contains its singular values. */
 
- /*  E      (input) DOUBLE PRECISION array, dimension (M-1) */
 
- /*         Contains the subdiagonal entries of the bidiagonal matrix. */
 
- /*         On exit, E has been destroyed. */
 
- /*  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N) */
 
- /*         On exit, U contains the left singular vectors. */
 
- /*  LDU    (input) INTEGER */
 
- /*         On entry, leading dimension of U. */
 
- /*  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M) */
 
- /*         On exit, VT' contains the right singular vectors. */
 
- /*  LDVT   (input) INTEGER */
 
- /*         On entry, leading dimension of VT. */
 
- /*  SMLSIZ (input) INTEGER */
 
- /*         On entry, maximum size of the subproblems at the */
 
- /*         bottom of the computation tree. */
 
- /*  IWORK  (workspace) INTEGER work array. */
 
- /*         Dimension must be at least (8 * N) */
 
- /*  WORK   (workspace) DOUBLE PRECISION work array. */
 
- /*         Dimension must be at least (3 * M**2 + 2 * M) */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an singular value did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     --iwork;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -2;
 
-     }
 
-     m = *n + *sqre;
 
-     if (*ldu < *n) {
 
- 	*info = -6;
 
-     } else if (*ldvt < m) {
 
- 	*info = -8;
 
-     } else if (*smlsiz < 3) {
 
- 	*info = -9;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLASD0", &i__1);
 
- 	return 0;
 
-     }
 
- /*     If the input matrix is too small, call DLASDQ to find the SVD. */
 
-     if (*n <= *smlsiz) {
 
- 	dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset], 
 
- 		ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info);
 
- 	return 0;
 
-     }
 
- /*     Set up the computation tree. */
 
-     inode = 1;
 
-     ndiml = inode + *n;
 
-     ndimr = ndiml + *n;
 
-     idxq = ndimr + *n;
 
-     iwk = idxq + *n;
 
-     dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
 
- 	    smlsiz);
 
- /*     For the nodes on bottom level of the tree, solve */
 
- /*     their subproblems by DLASDQ. */
 
-     ndb1 = (nd + 1) / 2;
 
-     ncc = 0;
 
-     i__1 = nd;
 
-     for (i__ = ndb1; i__ <= i__1; ++i__) {
 
- /*     IC : center row of each node */
 
- /*     NL : number of rows of left  subproblem */
 
- /*     NR : number of rows of right subproblem */
 
- /*     NLF: starting row of the left   subproblem */
 
- /*     NRF: starting row of the right  subproblem */
 
- 	i1 = i__ - 1;
 
- 	ic = iwork[inode + i1];
 
- 	nl = iwork[ndiml + i1];
 
- 	nlp1 = nl + 1;
 
- 	nr = iwork[ndimr + i1];
 
- 	nrp1 = nr + 1;
 
- 	nlf = ic - nl;
 
- 	nrf = ic + 1;
 
- 	sqrei = 1;
 
- 	dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[
 
- 		nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[
 
- 		nlf + nlf * u_dim1], ldu, &work[1], info);
 
- 	if (*info != 0) {
 
- 	    return 0;
 
- 	}
 
- 	itemp = idxq + nlf - 2;
 
- 	i__2 = nl;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    iwork[itemp + j] = j;
 
- /* L10: */
 
- 	}
 
- 	if (i__ == nd) {
 
- 	    sqrei = *sqre;
 
- 	} else {
 
- 	    sqrei = 1;
 
- 	}
 
- 	nrp1 = nr + sqrei;
 
- 	dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[
 
- 		nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[
 
- 		nrf + nrf * u_dim1], ldu, &work[1], info);
 
- 	if (*info != 0) {
 
- 	    return 0;
 
- 	}
 
- 	itemp = idxq + ic;
 
- 	i__2 = nr;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    iwork[itemp + j - 1] = j;
 
- /* L20: */
 
- 	}
 
- /* L30: */
 
-     }
 
- /*     Now conquer each subproblem bottom-up. */
 
-     for (lvl = nlvl; lvl >= 1; --lvl) {
 
- /*        Find the first node LF and last node LL on the */
 
- /*        current level LVL. */
 
- 	if (lvl == 1) {
 
- 	    lf = 1;
 
- 	    ll = 1;
 
- 	} else {
 
- 	    i__1 = lvl - 1;
 
- 	    lf = pow_ii(&c__2, &i__1);
 
- 	    ll = (lf << 1) - 1;
 
- 	}
 
- 	i__1 = ll;
 
- 	for (i__ = lf; i__ <= i__1; ++i__) {
 
- 	    im1 = i__ - 1;
 
- 	    ic = iwork[inode + im1];
 
- 	    nl = iwork[ndiml + im1];
 
- 	    nr = iwork[ndimr + im1];
 
- 	    nlf = ic - nl;
 
- 	    if (*sqre == 0 && i__ == ll) {
 
- 		sqrei = *sqre;
 
- 	    } else {
 
- 		sqrei = 1;
 
- 	    }
 
- 	    idxqc = idxq + nlf - 1;
 
- 	    alpha = d__[ic];
 
- 	    beta = e[ic];
 
- 	    dlasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf *
 
- 		     u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[
 
- 		    idxqc], &iwork[iwk], &work[1], info);
 
- 	    if (*info != 0) {
 
- 		return 0;
 
- 	    }
 
- /* L40: */
 
- 	}
 
- /* L50: */
 
-     }
 
-     return 0;
 
- /*     End of DLASD0 */
 
- } /* dlasd0_ */
 
 
  |