| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | /* dlahr2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b4 = -1.;static doublereal c_b5 = 1.;static integer c__1 = 1;static doublereal c_b38 = 0.;/* Subroutine */ int dlahr2_(integer *n, integer *k, integer *nb, doublereal *	a, integer *lda, doublereal *tau, doublereal *t, integer *ldt, 	doublereal *y, integer *ldy){    /* System generated locals */    integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, 	    i__3;    doublereal d__1;    /* Local variables */    integer i__;    doublereal ei;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *), dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dgemv_(	    char *, integer *, integer *, doublereal *, doublereal *, integer 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, 	     integer *), dtrmm_(char *, char *, char *, char *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *), daxpy_(integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 	    dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, 	     doublereal *, integer *), dlarfg_(	    integer *, doublereal *, doublereal *, integer *, doublereal *), 	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1) *//*  matrix A so that elements below the k-th subdiagonal are zero. The *//*  reduction is performed by an orthogonal similarity transformation *//*  Q' * A * Q. The routine returns the matrices V and T which determine *//*  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. *//*  This is an auxiliary routine called by DGEHRD. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  K       (input) INTEGER *//*          The offset for the reduction. Elements below the k-th *//*          subdiagonal in the first NB columns are reduced to zero. *//*          K < N. *//*  NB      (input) INTEGER *//*          The number of columns to be reduced. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1) *//*          On entry, the n-by-(n-k+1) general matrix A. *//*          On exit, the elements on and above the k-th subdiagonal in *//*          the first NB columns are overwritten with the corresponding *//*          elements of the reduced matrix; the elements below the k-th *//*          subdiagonal, with the array TAU, represent the matrix Q as a *//*          product of elementary reflectors. The other columns of A are *//*          unchanged. See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  TAU     (output) DOUBLE PRECISION array, dimension (NB) *//*          The scalar factors of the elementary reflectors. See Further *//*          Details. *//*  T       (output) DOUBLE PRECISION array, dimension (LDT,NB) *//*          The upper triangular matrix T. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T.  LDT >= NB. *//*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB) *//*          The n-by-nb matrix Y. *//*  LDY     (input) INTEGER *//*          The leading dimension of the array Y. LDY >= N. *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of nb elementary reflectors *//*     Q = H(1) H(2) . . . H(nb). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in *//*  A(i+k+1:n,i), and tau in TAU(i). *//*  The elements of the vectors v together form the (n-k+1)-by-nb matrix *//*  V which is needed, with T and Y, to apply the transformation to the *//*  unreduced part of the matrix, using an update of the form: *//*  A := (I - V*T*V') * (A - Y*V'). *//*  The contents of A on exit are illustrated by the following example *//*  with n = 7, k = 3 and nb = 2: *//*     ( a   a   a   a   a ) *//*     ( a   a   a   a   a ) *//*     ( a   a   a   a   a ) *//*     ( h   h   a   a   a ) *//*     ( v1  h   a   a   a ) *//*     ( v1  v2  a   a   a ) *//*     ( v1  v2  a   a   a ) *//*  where a denotes an element of the original matrix A, h denotes a *//*  modified element of the upper Hessenberg matrix H, and vi denotes an *//*  element of the vector defining H(i). *//*  This file is a slight modification of LAPACK-3.0's DLAHRD *//*  incorporating improvements proposed by Quintana-Orti and Van de *//*  Gejin. Note that the entries of A(1:K,2:NB) differ from those *//*  returned by the original LAPACK routine. This function is *//*  not backward compatible with LAPACK3.0. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    --tau;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    y_dim1 = *ldy;    y_offset = 1 + y_dim1;    y -= y_offset;    /* Function Body */    if (*n <= 1) {	return 0;    }    i__1 = *nb;    for (i__ = 1; i__ <= i__1; ++i__) {	if (i__ > 1) {/*           Update A(K+1:N,I) *//*           Update I-th column of A - Y * V' */	    i__2 = *n - *k;	    i__3 = i__ - 1;	    dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], 		    ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b5, &a[*k + 1 + 		    i__ * a_dim1], &c__1);/*           Apply I - V * T' * V' to this column (call it b) from the *//*           left, using the last column of T as workspace *//*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows) *//*                    ( V2 )             ( b2 ) *//*           where V1 is unit lower triangular *//*           w := V1' * b1 */	    i__2 = i__ - 1;	    dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 		    1], &c__1);	    i__2 = i__ - 1;	    dtrmv_("Lower", "Transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1], 		    lda, &t[*nb * t_dim1 + 1], &c__1);/*           w := w + V2'*b2 */	    i__2 = *n - *k - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], 		    lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb * 		    t_dim1 + 1], &c__1);/*           w := T'*w */	    i__2 = i__ - 1;	    dtrmv_("Upper", "Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, 		     &t[*nb * t_dim1 + 1], &c__1);/*           b2 := b2 - V2*w */	    i__2 = *n - *k - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1], 		     lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ + 		    i__ * a_dim1], &c__1);/*           b1 := b1 - V1*w */	    i__2 = i__ - 1;	    dtrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1);	    i__2 = i__ - 1;	    daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ 		    * a_dim1], &c__1);	    a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei;	}/*        Generate the elementary reflector H(I) to annihilate *//*        A(K+I+1:N,I) */	i__2 = *n - *k - i__ + 1;/* Computing MIN */	i__3 = *k + i__ + 1;	dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ * 		a_dim1], &c__1, &tau[i__]);	ei = a[*k + i__ + i__ * a_dim1];	a[*k + i__ + i__ * a_dim1] = 1.;/*        Compute  Y(K+1:N,I) */	i__2 = *n - *k;	i__3 = *n - *k - i__ + 1;	dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b5, &a[*k + 1 + (i__ + 1) * 		a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[*		k + 1 + i__ * y_dim1], &c__1);	i__2 = *n - *k - i__ + 1;	i__3 = i__ - 1;	dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, &		a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 + 		1], &c__1);	i__2 = *n - *k;	i__3 = i__ - 1;	dgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b4, &y[*k + 1 + y_dim1], ldy, 		&t[i__ * t_dim1 + 1], &c__1, &c_b5, &y[*k + 1 + i__ * y_dim1], 		 &c__1);	i__2 = *n - *k;	dscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1);/*        Compute T(1:I,I) */	i__2 = i__ - 1;	d__1 = -tau[i__];	dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);	i__2 = i__ - 1;	dtrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, 		&t[i__ * t_dim1 + 1], &c__1)		;	t[i__ + i__ * t_dim1] = tau[i__];/* L10: */    }    a[*k + *nb + *nb * a_dim1] = ei;/*     Compute Y(1:K,1:NB) */    dlacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy);    dtrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b5, &a[*k + 1 	    + a_dim1], lda, &y[y_offset], ldy);    if (*n > *k + *nb) {	i__1 = *n - *k - *nb;	dgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b5, &a[(*nb + 		2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b5, 		&y[y_offset], ldy);    }    dtrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b5, &t[	    t_offset], ldt, &y[y_offset], ldy);    return 0;/*     End of DLAHR2 */} /* dlahr2_ */
 |