| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 | /* dgglse.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b31 = -1.;static doublereal c_b33 = 1.;/* Subroutine */ int dgglse_(integer *m, integer *n, integer *p, doublereal *	a, integer *lda, doublereal *b, integer *ldb, doublereal *c__, 	doublereal *d__, doublereal *x, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;    /* Local variables */    integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), daxpy_(integer 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)	    , dtrmv_(char *, char *, char *, integer *, doublereal *, integer 	    *, doublereal *, integer *), dggrqf_(	    integer *, integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     integer *, integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer lwkmin;    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *), 	    dormrq_(char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;    extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGLSE solves the linear equality-constrained least squares (LSE) *//*  problem: *//*          minimize || c - A*x ||_2   subject to   B*x = d *//*  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given *//*  M-vector, and d is a given P-vector. It is assumed that *//*  P <= N <= M+P, and *//*           rank(B) = P and  rank( (A) ) = N. *//*                                ( (B) ) *//*  These conditions ensure that the LSE problem has a unique solution, *//*  which is obtained using a generalized RQ factorization of the *//*  matrices (B, A) given by *//*     B = (0 R)*Q,   A = Z*T*Q. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrices A and B. N >= 0. *//*  P       (input) INTEGER *//*          The number of rows of the matrix B. 0 <= P <= N <= M+P. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the elements on and above the diagonal of the array *//*          contain the min(M,N)-by-N upper trapezoidal matrix T. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) *//*          On entry, the P-by-N matrix B. *//*          On exit, the upper triangle of the subarray B(1:P,N-P+1:N) *//*          contains the P-by-P upper triangular matrix R. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,P). *//*  C       (input/output) DOUBLE PRECISION array, dimension (M) *//*          On entry, C contains the right hand side vector for the *//*          least squares part of the LSE problem. *//*          On exit, the residual sum of squares for the solution *//*          is given by the sum of squares of elements N-P+1 to M of *//*          vector C. *//*  D       (input/output) DOUBLE PRECISION array, dimension (P) *//*          On entry, D contains the right hand side vector for the *//*          constrained equation. *//*          On exit, D is destroyed. *//*  X       (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, X is the solution of the LSE problem. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,M+N+P). *//*          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, *//*          where NB is an upper bound for the optimal blocksizes for *//*          DGEQRF, SGERQF, DORMQR and SORMRQ. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1:  the upper triangular factor R associated with B in the *//*                generalized RQ factorization of the pair (B, A) is *//*                singular, so that rank(B) < P; the least squares *//*                solution could not be computed. *//*          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor *//*                T associated with A in the generalized RQ factorization *//*                of the pair (B, A) is singular, so that *//*                rank( (A) ) < N; the least squares solution could not *//*                    ( (B) ) *//*                be computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --c__;    --d__;    --x;    --work;    /* Function Body */    *info = 0;    mn = min(*m,*n);    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*p < 0 || *p > *n || *p < *n - *m) {	*info = -3;    } else if (*lda < max(1,*m)) {	*info = -5;    } else if (*ldb < max(1,*p)) {	*info = -7;    }/*     Calculate workspace */    if (*info == 0) {	if (*n == 0) {	    lwkmin = 1;	    lwkopt = 1;	} else {	    nb1 = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);	    nb2 = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1);	    nb3 = ilaenv_(&c__1, "DORMQR", " ", m, n, p, &c_n1);	    nb4 = ilaenv_(&c__1, "DORMRQ", " ", m, n, p, &c_n1);/* Computing MAX */	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);	    nb = max(i__1,nb4);	    lwkmin = *m + *n + *p;	    lwkopt = *p + mn + max(*m,*n) * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < lwkmin && ! lquery) {	    *info = -12;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGGLSE", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Compute the GRQ factorization of matrices B and A: *//*            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P *//*                     N-P  P                  (  0  R22 ) M+P-N *//*                                               N-P  P *//*     where T12 and R11 are upper triangular, and Q and Z are *//*     orthogonal. */    i__1 = *lwork - *p - mn;    dggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p 	    + 1], &work[*p + mn + 1], &i__1, info);    lopt = (integer) work[*p + mn + 1];/*     Update c = Z'*c = ( c1 ) N-P *//*                       ( c2 ) M+P-N */    i__1 = max(1,*m);    i__2 = *lwork - *p - mn;    dormqr_("Left", "Transpose", m, &c__1, &mn, &a[a_offset], lda, &work[*p + 	    1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[*p + mn + 1];    lopt = max(i__1,i__2);/*     Solve T12*x2 = d for x2 */    if (*p > 0) {	dtrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 		1) * b_dim1 + 1], ldb, &d__[1], p, info);	if (*info > 0) {	    *info = 1;	    return 0;	}/*        Put the solution in X */	dcopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);/*        Update c1 */	i__1 = *n - *p;	dgemv_("No transpose", &i__1, p, &c_b31, &a[(*n - *p + 1) * a_dim1 + 		1], lda, &d__[1], &c__1, &c_b33, &c__[1], &c__1);    }/*     Solve R11*x1 = c1 for x1 */    if (*n > *p) {	i__1 = *n - *p;	i__2 = *n - *p;	dtrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[		a_offset], lda, &c__[1], &i__2, info);	if (*info > 0) {	    *info = 2;	    return 0;	}/*        Put the solutions in X */	i__1 = *n - *p;	dcopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);    }/*     Compute the residual vector: */    if (*m < *n) {	nr = *m + *p - *n;	if (nr > 0) {	    i__1 = *n - *m;	    dgemv_("No transpose", &nr, &i__1, &c_b31, &a[*n - *p + 1 + (*m + 		    1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b33, &c__[*n - 		    *p + 1], &c__1);	}    } else {	nr = *p;    }    if (nr > 0) {	dtrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n 		- *p + 1) * a_dim1], lda, &d__[1], &c__1);	daxpy_(&nr, &c_b31, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);    }/*     Backward transformation x = Q'*x */    i__1 = *lwork - *p - mn;    dormrq_("Left", "Transpose", n, &c__1, p, &b[b_offset], ldb, &work[1], &x[	    1], n, &work[*p + mn + 1], &i__1, info);/* Computing MAX */    i__1 = lopt, i__2 = (integer) work[*p + mn + 1];    work[1] = (doublereal) (*p + mn + max(i__1,i__2));    return 0;/*     End of DGGLSE */} /* dgglse_ */
 |