| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 | 
							- /* dgetri.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__2 = 2;
 
- static doublereal c_b20 = -1.;
 
- static doublereal c_b22 = 1.;
 
- /* Subroutine */ int dgetri_(integer *n, doublereal *a, integer *lda, integer 
 
- 	*ipiv, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__, j, jb, nb, jj, jp, nn, iws;
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *),
 
- 	     dgemv_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     integer nbmin;
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), xerbla_(
 
- 	    char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwork;
 
-     extern /* Subroutine */ int dtrtri_(char *, char *, integer *, doublereal 
 
- 	    *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGETRI computes the inverse of a matrix using the LU factorization */
 
- /*  computed by DGETRF. */
 
- /*  This method inverts U and then computes inv(A) by solving the system */
 
- /*  inv(A)*L = inv(U) for inv(A). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the factors L and U from the factorization */
 
- /*          A = P*L*U as computed by DGETRF. */
 
- /*          On exit, if INFO = 0, the inverse of the original matrix A. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          The pivot indices from DGETRF; for 1<=i<=N, row i of the */
 
- /*          matrix was interchanged with row IPIV(i). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,N). */
 
- /*          For optimal performance LWORK >= N*NB, where NB is */
 
- /*          the optimal blocksize returned by ILAENV. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
 
- /*                singular and its inverse could not be computed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --ipiv;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nb = ilaenv_(&c__1, "DGETRI", " ", n, &c_n1, &c_n1, &c_n1);
 
-     lwkopt = *n * nb;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -3;
 
-     } else if (*lwork < max(1,*n) && ! lquery) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGETRI", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Form inv(U).  If INFO > 0 from DTRTRI, then U is singular, */
 
- /*     and the inverse is not computed. */
 
-     dtrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
 
-     if (*info > 0) {
 
- 	return 0;
 
-     }
 
-     nbmin = 2;
 
-     ldwork = *n;
 
-     if (nb > 1 && nb < *n) {
 
- /* Computing MAX */
 
- 	i__1 = ldwork * nb;
 
- 	iws = max(i__1,1);
 
- 	if (*lwork < iws) {
 
- 	    nb = *lwork / ldwork;
 
- /* Computing MAX */
 
- 	    i__1 = 2, i__2 = ilaenv_(&c__2, "DGETRI", " ", n, &c_n1, &c_n1, &
 
- 		    c_n1);
 
- 	    nbmin = max(i__1,i__2);
 
- 	}
 
-     } else {
 
- 	iws = *n;
 
-     }
 
- /*     Solve the equation inv(A)*L = inv(U) for inv(A). */
 
-     if (nb < nbmin || nb >= *n) {
 
- /*        Use unblocked code. */
 
- 	for (j = *n; j >= 1; --j) {
 
- /*           Copy current column of L to WORK and replace with zeros. */
 
- 	    i__1 = *n;
 
- 	    for (i__ = j + 1; i__ <= i__1; ++i__) {
 
- 		work[i__] = a[i__ + j * a_dim1];
 
- 		a[i__ + j * a_dim1] = 0.;
 
- /* L10: */
 
- 	    }
 
- /*           Compute current column of inv(A). */
 
- 	    if (j < *n) {
 
- 		i__1 = *n - j;
 
- 		dgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 
 
- 			+ 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 
 
- 			+ 1], &c__1);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     } else {
 
- /*        Use blocked code. */
 
- 	nn = (*n - 1) / nb * nb + 1;
 
- 	i__1 = -nb;
 
- 	for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
 
- /* Computing MIN */
 
- 	    i__2 = nb, i__3 = *n - j + 1;
 
- 	    jb = min(i__2,i__3);
 
- /*           Copy current block column of L to WORK and replace with */
 
- /*           zeros. */
 
- 	    i__2 = j + jb - 1;
 
- 	    for (jj = j; jj <= i__2; ++jj) {
 
- 		i__3 = *n;
 
- 		for (i__ = jj + 1; i__ <= i__3; ++i__) {
 
- 		    work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
 
- 		    a[i__ + jj * a_dim1] = 0.;
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- /*           Compute current block column of inv(A). */
 
- 	    if (j + jb <= *n) {
 
- 		i__2 = *n - j - jb + 1;
 
- 		dgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, 
 
- 			&a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
 
- 			ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
 
- 	    }
 
- 	    dtrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
 
- 		    work[j], &ldwork, &a[j * a_dim1 + 1], lda);
 
- /* L50: */
 
- 	}
 
-     }
 
- /*     Apply column interchanges. */
 
-     for (j = *n - 1; j >= 1; --j) {
 
- 	jp = ipiv[j];
 
- 	if (jp != j) {
 
- 	    dswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
 
- 	}
 
- /* L60: */
 
-     }
 
-     work[1] = (doublereal) iws;
 
-     return 0;
 
- /*     End of DGETRI */
 
- } /* dgetri_ */
 
 
  |