| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | 
							- /* dgeqpf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dgeqpf_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, integer *jpvt, doublereal *tau, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, ma, mn;
 
-     doublereal aii;
 
-     integer pvt;
 
-     doublereal temp;
 
-     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 
-     doublereal temp2, tol3z;
 
-     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *);
 
-     integer itemp;
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dgeqr2_(integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 
 
- 	    dorm2r_(char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     extern doublereal dlamch_(char *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int dlarfp_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *), xerbla_(char *, integer *);
 
- /*  -- LAPACK deprecated driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This routine is deprecated and has been replaced by routine DGEQP3. */
 
- /*  DGEQPF computes a QR factorization with column pivoting of a */
 
- /*  real M-by-N matrix A: A*P = Q*R. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A. N >= 0 */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, the upper triangle of the array contains the */
 
- /*          min(M,N)-by-N upper triangular matrix R; the elements */
 
- /*          below the diagonal, together with the array TAU, */
 
- /*          represent the orthogonal matrix Q as a product of */
 
- /*          min(m,n) elementary reflectors. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  JPVT    (input/output) INTEGER array, dimension (N) */
 
- /*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
 
- /*          to the front of A*P (a leading column); if JPVT(i) = 0, */
 
- /*          the i-th column of A is a free column. */
 
- /*          On exit, if JPVT(i) = k, then the i-th column of A*P */
 
- /*          was the k-th column of A. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of elementary reflectors */
 
- /*     Q = H(1) H(2) . . . H(n) */
 
- /*  Each H(i) has the form */
 
- /*     H = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
 
- /*  The matrix P is represented in jpvt as follows: If */
 
- /*     jpvt(j) = i */
 
- /*  then the jth column of P is the ith canonical unit vector. */
 
- /*  Partial column norm updating strategy modified by */
 
- /*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
 
- /*    University of Zagreb, Croatia. */
 
- /*    June 2006. */
 
- /*  For more details see LAPACK Working Note 176. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --jpvt;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGEQPF", &i__1);
 
- 	return 0;
 
-     }
 
-     mn = min(*m,*n);
 
-     tol3z = sqrt(dlamch_("Epsilon"));
 
- /*     Move initial columns up front */
 
-     itemp = 1;
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (jpvt[i__] != 0) {
 
- 	    if (i__ != itemp) {
 
- 		dswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1], 
 
- 			 &c__1);
 
- 		jpvt[i__] = jpvt[itemp];
 
- 		jpvt[itemp] = i__;
 
- 	    } else {
 
- 		jpvt[i__] = i__;
 
- 	    }
 
- 	    ++itemp;
 
- 	} else {
 
- 	    jpvt[i__] = i__;
 
- 	}
 
- /* L10: */
 
-     }
 
-     --itemp;
 
- /*     Compute the QR factorization and update remaining columns */
 
-     if (itemp > 0) {
 
- 	ma = min(itemp,*m);
 
- 	dgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
 
- 	if (ma < *n) {
 
- 	    i__1 = *n - ma;
 
- 	    dorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
 
- 		    tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
 
- 	}
 
-     }
 
-     if (itemp < mn) {
 
- /*        Initialize partial column norms. The first n elements of */
 
- /*        work store the exact column norms. */
 
- 	i__1 = *n;
 
- 	for (i__ = itemp + 1; i__ <= i__1; ++i__) {
 
- 	    i__2 = *m - itemp;
 
- 	    work[i__] = dnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
 
- 	    work[*n + i__] = work[i__];
 
- /* L20: */
 
- 	}
 
- /*        Compute factorization */
 
- 	i__1 = mn;
 
- 	for (i__ = itemp + 1; i__ <= i__1; ++i__) {
 
- /*           Determine ith pivot column and swap if necessary */
 
- 	    i__2 = *n - i__ + 1;
 
- 	    pvt = i__ - 1 + idamax_(&i__2, &work[i__], &c__1);
 
- 	    if (pvt != i__) {
 
- 		dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
 
- 			c__1);
 
- 		itemp = jpvt[pvt];
 
- 		jpvt[pvt] = jpvt[i__];
 
- 		jpvt[i__] = itemp;
 
- 		work[pvt] = work[i__];
 
- 		work[*n + pvt] = work[*n + i__];
 
- 	    }
 
- /*           Generate elementary reflector H(i) */
 
- 	    if (i__ < *m) {
 
- 		i__2 = *m - i__ + 1;
 
- 		dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ * 
 
- 			a_dim1], &c__1, &tau[i__]);
 
- 	    } else {
 
- 		dlarfp_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
 
- 			c__1, &tau[*m]);
 
- 	    }
 
- 	    if (i__ < *n) {
 
- /*              Apply H(i) to A(i:m,i+1:n) from the left */
 
- 		aii = a[i__ + i__ * a_dim1];
 
- 		a[i__ + i__ * a_dim1] = 1.;
 
- 		i__2 = *m - i__ + 1;
 
- 		i__3 = *n - i__;
 
- 		dlarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
 
- 			tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
 
- 			n << 1) + 1]);
 
- 		a[i__ + i__ * a_dim1] = aii;
 
- 	    }
 
- /*           Update partial column norms */
 
- 	    i__2 = *n;
 
- 	    for (j = i__ + 1; j <= i__2; ++j) {
 
- 		if (work[j] != 0.) {
 
- /*                 NOTE: The following 4 lines follow from the analysis in */
 
- /*                 Lapack Working Note 176. */
 
- 		    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / work[j];
 
- /* Computing MAX */
 
- 		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
 
- 		    temp = max(d__1,d__2);
 
- /* Computing 2nd power */
 
- 		    d__1 = work[j] / work[*n + j];
 
- 		    temp2 = temp * (d__1 * d__1);
 
- 		    if (temp2 <= tol3z) {
 
- 			if (*m - i__ > 0) {
 
- 			    i__3 = *m - i__;
 
- 			    work[j] = dnrm2_(&i__3, &a[i__ + 1 + j * a_dim1], 
 
- 				    &c__1);
 
- 			    work[*n + j] = work[j];
 
- 			} else {
 
- 			    work[j] = 0.;
 
- 			    work[*n + j] = 0.;
 
- 			}
 
- 		    } else {
 
- 			work[j] *= sqrt(temp);
 
- 		    }
 
- 		}
 
- /* L30: */
 
- 	    }
 
- /* L40: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGEQPF */
 
- } /* dgeqpf_ */
 
 
  |