| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 | 
							- /* dgebrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- static doublereal c_b21 = -1.;
 
- static doublereal c_b22 = 1.;
 
- /* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
 
- 	taup, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer i__, j, nb, nx;
 
-     doublereal ws;
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     integer nbmin, iinfo, minmn;
 
-     extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *), dlabrd_(integer *, integer *, integer *
 
- , doublereal *, integer *, doublereal *, doublereal *, doublereal 
 
- 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)
 
- 	    , xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwrkx, ldwrky, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEBRD reduces a general real M-by-N matrix A to upper or lower */
 
- /*  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */
 
- /*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows in the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns in the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N general matrix to be reduced. */
 
- /*          On exit, */
 
- /*          if m >= n, the diagonal and the first superdiagonal are */
 
- /*            overwritten with the upper bidiagonal matrix B; the */
 
- /*            elements below the diagonal, with the array TAUQ, represent */
 
- /*            the orthogonal matrix Q as a product of elementary */
 
- /*            reflectors, and the elements above the first superdiagonal, */
 
- /*            with the array TAUP, represent the orthogonal matrix P as */
 
- /*            a product of elementary reflectors; */
 
- /*          if m < n, the diagonal and the first subdiagonal are */
 
- /*            overwritten with the lower bidiagonal matrix B; the */
 
- /*            elements below the first subdiagonal, with the array TAUQ, */
 
- /*            represent the orthogonal matrix Q as a product of */
 
- /*            elementary reflectors, and the elements above the diagonal, */
 
- /*            with the array TAUP, represent the orthogonal matrix P as */
 
- /*            a product of elementary reflectors. */
 
- /*          See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The diagonal elements of the bidiagonal matrix B: */
 
- /*          D(i) = A(i,i). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
 
- /*          The off-diagonal elements of the bidiagonal matrix B: */
 
- /*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
 
- /*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
 
- /*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix Q. See Further Details. */
 
- /*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix P. See Further Details. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The length of the array WORK.  LWORK >= max(1,M,N). */
 
- /*          For optimum performance LWORK >= (M+N)*NB, where NB */
 
- /*          is the optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrices Q and P are represented as products of elementary */
 
- /*  reflectors: */
 
- /*  If m >= n, */
 
- /*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) */
 
- /*  Each H(i) and G(i) has the form: */
 
- /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
 
- /*  where tauq and taup are real scalars, and v and u are real vectors; */
 
- /*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
 
- /*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
 
- /*  tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  If m < n, */
 
- /*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) */
 
- /*  Each H(i) and G(i) has the form: */
 
- /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
 
- /*  where tauq and taup are real scalars, and v and u are real vectors; */
 
- /*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
 
- /*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
 
- /*  tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  The contents of A on exit are illustrated by the following examples: */
 
- /*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
 
- /*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) */
 
- /*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) */
 
- /*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) */
 
- /*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) */
 
- /*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) */
 
- /*    (  v1  v2  v3  v4  v5 ) */
 
- /*  where d and e denote diagonal and off-diagonal elements of B, vi */
 
- /*  denotes an element of the vector defining H(i), and ui an element of */
 
- /*  the vector defining G(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --d__;
 
-     --e;
 
-     --tauq;
 
-     --taup;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
- /* Computing MAX */
 
-     i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1);
 
-     nb = max(i__1,i__2);
 
-     lwkopt = (*m + *n) * nb;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = max(1,*m);
 
- 	if (*lwork < max(i__1,*n) && ! lquery) {
 
- 	    *info = -10;
 
- 	}
 
-     }
 
-     if (*info < 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGEBRD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     minmn = min(*m,*n);
 
-     if (minmn == 0) {
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
-     ws = (doublereal) max(*m,*n);
 
-     ldwrkx = *m;
 
-     ldwrky = *n;
 
-     if (nb > 1 && nb < minmn) {
 
- /*        Set the crossover point NX. */
 
- /* Computing MAX */
 
- 	i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1);
 
- 	nx = max(i__1,i__2);
 
- /*        Determine when to switch from blocked to unblocked code. */
 
- 	if (nx < minmn) {
 
- 	    ws = (doublereal) ((*m + *n) * nb);
 
- 	    if ((doublereal) (*lwork) < ws) {
 
- /*              Not enough work space for the optimal NB, consider using */
 
- /*              a smaller block size. */
 
- 		nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1);
 
- 		if (*lwork >= (*m + *n) * nbmin) {
 
- 		    nb = *lwork / (*m + *n);
 
- 		} else {
 
- 		    nb = 1;
 
- 		    nx = minmn;
 
- 		}
 
- 	    }
 
- 	}
 
-     } else {
 
- 	nx = minmn;
 
-     }
 
-     i__1 = minmn - nx;
 
-     i__2 = nb;
 
-     for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 
- /*        Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
 
- /*        the matrices X and Y which are needed to update the unreduced */
 
- /*        part of the matrix */
 
- 	i__3 = *m - i__ + 1;
 
- 	i__4 = *n - i__ + 1;
 
- 	dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
 
- 		i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx 
 
- 		* nb + 1], &ldwrky);
 
- /*        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
 
- /*        of the form  A := A - V*Y' - X*U' */
 
- 	i__3 = *m - i__ - nb + 1;
 
- 	i__4 = *n - i__ - nb + 1;
 
- 	dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ 
 
- 		+ nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
 
- 		ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
 
- 	i__3 = *m - i__ - nb + 1;
 
- 	i__4 = *n - i__ - nb + 1;
 
- 	dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
 
- 		work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
 
- 		c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
 
- /*        Copy diagonal and off-diagonal elements of B back into A */
 
- 	if (*m >= *n) {
 
- 	    i__3 = i__ + nb - 1;
 
- 	    for (j = i__; j <= i__3; ++j) {
 
- 		a[j + j * a_dim1] = d__[j];
 
- 		a[j + (j + 1) * a_dim1] = e[j];
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- 	    i__3 = i__ + nb - 1;
 
- 	    for (j = i__; j <= i__3; ++j) {
 
- 		a[j + j * a_dim1] = d__[j];
 
- 		a[j + 1 + j * a_dim1] = e[j];
 
- /* L20: */
 
- 	    }
 
- 	}
 
- /* L30: */
 
-     }
 
- /*     Use unblocked code to reduce the remainder of the matrix */
 
-     i__2 = *m - i__ + 1;
 
-     i__1 = *n - i__ + 1;
 
-     dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
 
- 	    tauq[i__], &taup[i__], &work[1], &iinfo);
 
-     work[1] = ws;
 
-     return 0;
 
- /*     End of DGEBRD */
 
- } /* dgebrd_ */
 
 
  |