| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | 
							- /* dgebd2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dgebd2_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
 
- 	taup, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__;
 
-     extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *), dlarfg_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *), xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEBD2 reduces a real general m by n matrix A to upper or lower */
 
- /*  bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */
 
- /*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows in the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns in the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the m by n general matrix to be reduced. */
 
- /*          On exit, */
 
- /*          if m >= n, the diagonal and the first superdiagonal are */
 
- /*            overwritten with the upper bidiagonal matrix B; the */
 
- /*            elements below the diagonal, with the array TAUQ, represent */
 
- /*            the orthogonal matrix Q as a product of elementary */
 
- /*            reflectors, and the elements above the first superdiagonal, */
 
- /*            with the array TAUP, represent the orthogonal matrix P as */
 
- /*            a product of elementary reflectors; */
 
- /*          if m < n, the diagonal and the first subdiagonal are */
 
- /*            overwritten with the lower bidiagonal matrix B; the */
 
- /*            elements below the first subdiagonal, with the array TAUQ, */
 
- /*            represent the orthogonal matrix Q as a product of */
 
- /*            elementary reflectors, and the elements above the diagonal, */
 
- /*            with the array TAUP, represent the orthogonal matrix P as */
 
- /*            a product of elementary reflectors. */
 
- /*          See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The diagonal elements of the bidiagonal matrix B: */
 
- /*          D(i) = A(i,i). */
 
- /*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
 
- /*          The off-diagonal elements of the bidiagonal matrix B: */
 
- /*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
 
- /*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
 
- /*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix Q. See Further Details. */
 
- /*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix P. See Further Details. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(M,N)) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit. */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrices Q and P are represented as products of elementary */
 
- /*  reflectors: */
 
- /*  If m >= n, */
 
- /*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) */
 
- /*  Each H(i) and G(i) has the form: */
 
- /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
 
- /*  where tauq and taup are real scalars, and v and u are real vectors; */
 
- /*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
 
- /*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
 
- /*  tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  If m < n, */
 
- /*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) */
 
- /*  Each H(i) and G(i) has the form: */
 
- /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
 
- /*  where tauq and taup are real scalars, and v and u are real vectors; */
 
- /*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
 
- /*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
 
- /*  tauq is stored in TAUQ(i) and taup in TAUP(i). */
 
- /*  The contents of A on exit are illustrated by the following examples: */
 
- /*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
 
- /*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) */
 
- /*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) */
 
- /*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) */
 
- /*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) */
 
- /*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) */
 
- /*    (  v1  v2  v3  v4  v5 ) */
 
- /*  where d and e denote diagonal and off-diagonal elements of B, vi */
 
- /*  denotes an element of the vector defining H(i), and ui an element of */
 
- /*  the vector defining G(i). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --d__;
 
-     --e;
 
-     --tauq;
 
-     --taup;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info < 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGEBD2", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*m >= *n) {
 
- /*        Reduce to upper bidiagonal form */
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
 
- 	    i__2 = *m - i__ + 1;
 
- /* Computing MIN */
 
- 	    i__3 = i__ + 1;
 
- 	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * 
 
- 		    a_dim1], &c__1, &tauq[i__]);
 
- 	    d__[i__] = a[i__ + i__ * a_dim1];
 
- 	    a[i__ + i__ * a_dim1] = 1.;
 
- /*           Apply H(i) to A(i:m,i+1:n) from the left */
 
- 	    if (i__ < *n) {
 
- 		i__2 = *m - i__ + 1;
 
- 		i__3 = *n - i__;
 
- 		dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
 
- 			tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]
 
- );
 
- 	    }
 
- 	    a[i__ + i__ * a_dim1] = d__[i__];
 
- 	    if (i__ < *n) {
 
- /*              Generate elementary reflector G(i) to annihilate */
 
- /*              A(i,i+2:n) */
 
- 		i__2 = *n - i__;
 
- /* Computing MIN */
 
- 		i__3 = i__ + 2;
 
- 		dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
 
- 			i__3, *n)* a_dim1], lda, &taup[i__]);
 
- 		e[i__] = a[i__ + (i__ + 1) * a_dim1];
 
- 		a[i__ + (i__ + 1) * a_dim1] = 1.;
 
- /*              Apply G(i) to A(i+1:m,i+1:n) from the right */
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__;
 
- 		dlarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1], 
 
- 			lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], 
 
- 			lda, &work[1]);
 
- 		a[i__ + (i__ + 1) * a_dim1] = e[i__];
 
- 	    } else {
 
- 		taup[i__] = 0.;
 
- 	    }
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /*        Reduce to lower bidiagonal form */
 
- 	i__1 = *m;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*           Generate elementary reflector G(i) to annihilate A(i,i+1:n) */
 
- 	    i__2 = *n - i__ + 1;
 
- /* Computing MIN */
 
- 	    i__3 = i__ + 1;
 
- 	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* 
 
- 		    a_dim1], lda, &taup[i__]);
 
- 	    d__[i__] = a[i__ + i__ * a_dim1];
 
- 	    a[i__ + i__ * a_dim1] = 1.;
 
- /*           Apply G(i) to A(i+1:m,i:n) from the right */
 
- 	    if (i__ < *m) {
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__ + 1;
 
- 		dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &
 
- 			taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
 
- 	    }
 
- 	    a[i__ + i__ * a_dim1] = d__[i__];
 
- 	    if (i__ < *m) {
 
- /*              Generate elementary reflector H(i) to annihilate */
 
- /*              A(i+2:m,i) */
 
- 		i__2 = *m - i__;
 
- /* Computing MIN */
 
- 		i__3 = i__ + 2;
 
- 		dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ 
 
- 			i__ * a_dim1], &c__1, &tauq[i__]);
 
- 		e[i__] = a[i__ + 1 + i__ * a_dim1];
 
- 		a[i__ + 1 + i__ * a_dim1] = 1.;
 
- /*              Apply H(i) to A(i+1:m,i+1:n) from the left */
 
- 		i__2 = *m - i__;
 
- 		i__3 = *n - i__;
 
- 		dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
 
- 			c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1], 
 
- 			lda, &work[1]);
 
- 		a[i__ + 1 + i__ * a_dim1] = e[i__];
 
- 	    } else {
 
- 		tauq[i__] = 0.;
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGEBD2 */
 
- } /* dgebd2_ */
 
 
  |