xgemm.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2016 Université de Bordeaux
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012, 2013 CNRS
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*
  19. * Simple parallel GEMM implementation: partition the output matrix in the two
  20. * dimensions, and the input matrices in the corresponding dimension, and
  21. * perform the output computations in parallel.
  22. */
  23. #ifndef TYPE
  24. #error "Do not compile xgemm.c directly, compile sgemm.c or dgemm.c"
  25. #endif
  26. #include <limits.h>
  27. #include <string.h>
  28. #include <math.h>
  29. #include <sys/types.h>
  30. #include <starpu.h>
  31. #include <common/blas.h>
  32. #ifdef STARPU_USE_CUDA
  33. #include <cuda.h>
  34. #include <cublas.h>
  35. #endif
  36. static unsigned niter = 10;
  37. static unsigned nslicesx = 4;
  38. static unsigned nslicesy = 4;
  39. #ifdef STARPU_QUICK_CHECK
  40. static unsigned xdim = 256;
  41. static unsigned ydim = 256;
  42. static unsigned zdim = 64;
  43. #else
  44. static unsigned xdim = 960*4;
  45. static unsigned ydim = 960*4;
  46. static unsigned zdim = 960*4;
  47. #endif
  48. static unsigned check = 0;
  49. static unsigned bound = 0;
  50. static TYPE *A, *B, *C;
  51. static starpu_data_handle_t A_handle, B_handle, C_handle;
  52. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  53. #define PRINTF(fmt, ...) do { if (!getenv("STARPU_SSILENT")) {printf(fmt, ## __VA_ARGS__); }} while(0)
  54. static void check_output(void)
  55. {
  56. /* compute C = C - AB */
  57. CPU_GEMM("N", "N", ydim, xdim, zdim, (TYPE)-1.0f, A, ydim, B, zdim, (TYPE)1.0f, C, ydim);
  58. /* make sure C = 0 */
  59. TYPE err;
  60. err = CPU_ASUM(xdim*ydim, C, 1);
  61. if (err < xdim*ydim*0.001)
  62. {
  63. FPRINTF(stderr, "Results are OK\n");
  64. }
  65. else
  66. {
  67. int max;
  68. max = CPU_IAMAX(xdim*ydim, C, 1);
  69. FPRINTF(stderr, "There were errors ... err = %f\n", err);
  70. FPRINTF(stderr, "Max error : %e\n", C[max]);
  71. }
  72. }
  73. static void init_problem_data(void)
  74. {
  75. unsigned i,j;
  76. starpu_malloc_flags((void **)&A, zdim*ydim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  77. starpu_malloc_flags((void **)&B, xdim*zdim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  78. starpu_malloc_flags((void **)&C, xdim*ydim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  79. #ifndef STARPU_SIMGRID
  80. /* fill the A and B matrices */
  81. for (j=0; j < ydim; j++)
  82. {
  83. for (i=0; i < zdim; i++)
  84. {
  85. A[j+i*ydim] = (TYPE)(starpu_drand48());
  86. }
  87. }
  88. for (j=0; j < zdim; j++)
  89. {
  90. for (i=0; i < xdim; i++)
  91. {
  92. B[j+i*zdim] = (TYPE)(starpu_drand48());
  93. }
  94. }
  95. for (j=0; j < ydim; j++)
  96. {
  97. for (i=0; i < xdim; i++)
  98. {
  99. C[j+i*ydim] = (TYPE)(0);
  100. }
  101. }
  102. #endif
  103. }
  104. static void partition_mult_data(void)
  105. {
  106. starpu_matrix_data_register(&A_handle, STARPU_MAIN_RAM, (uintptr_t)A,
  107. ydim, ydim, zdim, sizeof(TYPE));
  108. starpu_matrix_data_register(&B_handle, STARPU_MAIN_RAM, (uintptr_t)B,
  109. zdim, zdim, xdim, sizeof(TYPE));
  110. starpu_matrix_data_register(&C_handle, STARPU_MAIN_RAM, (uintptr_t)C,
  111. ydim, ydim, xdim, sizeof(TYPE));
  112. struct starpu_data_filter vert;
  113. memset(&vert, 0, sizeof(vert));
  114. vert.filter_func = starpu_matrix_filter_vertical_block;
  115. vert.nchildren = nslicesx;
  116. struct starpu_data_filter horiz;
  117. memset(&horiz, 0, sizeof(horiz));
  118. horiz.filter_func = starpu_matrix_filter_block;
  119. horiz.nchildren = nslicesy;
  120. starpu_data_partition(B_handle, &vert);
  121. starpu_data_partition(A_handle, &horiz);
  122. starpu_data_map_filters(C_handle, 2, &vert, &horiz);
  123. }
  124. #ifdef STARPU_USE_CUDA
  125. static void cublas_mult(void *descr[], STARPU_ATTRIBUTE_UNUSED void *arg)
  126. {
  127. TYPE *subA = (TYPE *)STARPU_MATRIX_GET_PTR(descr[0]);
  128. TYPE *subB = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  129. TYPE *subC = (TYPE *)STARPU_MATRIX_GET_PTR(descr[2]);
  130. unsigned nxC = STARPU_MATRIX_GET_NX(descr[2]);
  131. unsigned nyC = STARPU_MATRIX_GET_NY(descr[2]);
  132. unsigned nyA = STARPU_MATRIX_GET_NY(descr[0]);
  133. unsigned ldA = STARPU_MATRIX_GET_LD(descr[0]);
  134. unsigned ldB = STARPU_MATRIX_GET_LD(descr[1]);
  135. unsigned ldC = STARPU_MATRIX_GET_LD(descr[2]);
  136. CUBLAS_GEMM('n', 'n', nxC, nyC, nyA, (TYPE)1.0, subA, ldA, subB, ldB,
  137. (TYPE)0.0, subC, ldC);
  138. }
  139. #endif
  140. void cpu_mult(void *descr[], STARPU_ATTRIBUTE_UNUSED void *arg)
  141. {
  142. TYPE *subA = (TYPE *)STARPU_MATRIX_GET_PTR(descr[0]);
  143. TYPE *subB = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  144. TYPE *subC = (TYPE *)STARPU_MATRIX_GET_PTR(descr[2]);
  145. unsigned nxC = STARPU_MATRIX_GET_NX(descr[2]);
  146. unsigned nyC = STARPU_MATRIX_GET_NY(descr[2]);
  147. unsigned nyA = STARPU_MATRIX_GET_NY(descr[0]);
  148. unsigned ldA = STARPU_MATRIX_GET_LD(descr[0]);
  149. unsigned ldB = STARPU_MATRIX_GET_LD(descr[1]);
  150. unsigned ldC = STARPU_MATRIX_GET_LD(descr[2]);
  151. int worker_size = starpu_combined_worker_get_size();
  152. if (worker_size == 1)
  153. {
  154. /* Sequential CPU task */
  155. CPU_GEMM("N", "N", nxC, nyC, nyA, (TYPE)1.0, subA, ldA, subB, ldB, (TYPE)0.0, subC, ldC);
  156. }
  157. else
  158. {
  159. /* Parallel CPU task */
  160. unsigned rank = starpu_combined_worker_get_rank();
  161. unsigned block_size = (nyC + worker_size - 1)/worker_size;
  162. unsigned new_nyC = STARPU_MIN(nyC, block_size*(rank+1)) - block_size*rank;
  163. STARPU_ASSERT(nyC = STARPU_MATRIX_GET_NY(descr[1]));
  164. TYPE *new_subB = &subB[block_size*rank];
  165. TYPE *new_subC = &subC[block_size*rank];
  166. CPU_GEMM("N", "N", nxC, new_nyC, nyA, (TYPE)1.0, subA, ldA, new_subB, ldB, (TYPE)0.0, new_subC, ldC);
  167. }
  168. }
  169. static struct starpu_perfmodel starpu_gemm_model =
  170. {
  171. .type = STARPU_HISTORY_BASED,
  172. .symbol = STARPU_GEMM_STR(gemm)
  173. };
  174. static struct starpu_codelet cl =
  175. {
  176. .type = STARPU_SEQ, /* changed to STARPU_SPMD if -spmd is passed */
  177. .max_parallelism = INT_MAX,
  178. .cpu_funcs = {cpu_mult},
  179. .cpu_funcs_name = {"cpu_mult"},
  180. #ifdef STARPU_USE_CUDA
  181. .cuda_funcs = {cublas_mult},
  182. #elif defined(STARPU_SIMGRID)
  183. .cuda_funcs = {(void*)1},
  184. #endif
  185. .cuda_flags = {STARPU_CUDA_ASYNC},
  186. .nbuffers = 3,
  187. .modes = {STARPU_R, STARPU_R, STARPU_RW},
  188. .model = &starpu_gemm_model
  189. };
  190. static void parse_args(int argc, char **argv)
  191. {
  192. int i;
  193. for (i = 1; i < argc; i++)
  194. {
  195. if (strcmp(argv[i], "-nblocks") == 0)
  196. {
  197. char *argptr;
  198. nslicesx = strtol(argv[++i], &argptr, 10);
  199. nslicesy = nslicesx;
  200. }
  201. else if (strcmp(argv[i], "-nblocksx") == 0)
  202. {
  203. char *argptr;
  204. nslicesx = strtol(argv[++i], &argptr, 10);
  205. }
  206. else if (strcmp(argv[i], "-nblocksy") == 0)
  207. {
  208. char *argptr;
  209. nslicesy = strtol(argv[++i], &argptr, 10);
  210. }
  211. else if (strcmp(argv[i], "-x") == 0)
  212. {
  213. char *argptr;
  214. xdim = strtol(argv[++i], &argptr, 10);
  215. }
  216. else if (strcmp(argv[i], "-y") == 0)
  217. {
  218. char *argptr;
  219. ydim = strtol(argv[++i], &argptr, 10);
  220. }
  221. else if (strcmp(argv[i], "-z") == 0)
  222. {
  223. char *argptr;
  224. zdim = strtol(argv[++i], &argptr, 10);
  225. }
  226. else if (strcmp(argv[i], "-size") == 0)
  227. {
  228. char *argptr;
  229. xdim = ydim = zdim = strtol(argv[++i], &argptr, 10);
  230. }
  231. else if (strcmp(argv[i], "-iter") == 0)
  232. {
  233. char *argptr;
  234. niter = strtol(argv[++i], &argptr, 10);
  235. }
  236. else if (strcmp(argv[i], "-bound") == 0)
  237. {
  238. bound = 1;
  239. }
  240. else if (strcmp(argv[i], "-check") == 0)
  241. {
  242. check = 1;
  243. }
  244. else if (strcmp(argv[i], "-spmd") == 0)
  245. {
  246. cl.type = STARPU_SPMD;
  247. }
  248. else if (strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0 || strcmp(argv[i], "-h") == 0)
  249. {
  250. fprintf(stderr,"Usage: %s [-nblocks n] [-nblocksx x] [-nblocksy y] [-x x] [-y y] [-z z] [-size size] [-iter iter] [-bound] [-check] [-spmd]\n", argv[0]);
  251. fprintf(stderr,"Currently selected: %ux%u * %ux%u and %ux%u blocks, %u iterations\n", zdim, ydim, xdim, zdim, nslicesx, nslicesy, niter);
  252. exit(EXIT_SUCCESS);
  253. }
  254. else
  255. {
  256. fprintf(stderr,"Unrecognized option %s", argv[i]);
  257. exit(EXIT_FAILURE);
  258. }
  259. }
  260. }
  261. int main(int argc, char **argv)
  262. {
  263. double start, end;
  264. int ret;
  265. parse_args(argc, argv);
  266. #ifdef STARPU_QUICK_CHECK
  267. niter /= 10;
  268. #endif
  269. ret = starpu_init(NULL);
  270. if (ret == -ENODEV)
  271. return 77;
  272. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  273. starpu_cublas_init();
  274. init_problem_data();
  275. partition_mult_data();
  276. if (bound)
  277. starpu_bound_start(0, 0);
  278. start = starpu_timing_now();
  279. unsigned x, y, iter;
  280. for (iter = 0; iter < niter; iter++)
  281. {
  282. for (x = 0; x < nslicesx; x++)
  283. for (y = 0; y < nslicesy; y++)
  284. {
  285. struct starpu_task *task = starpu_task_create();
  286. task->cl = &cl;
  287. task->handles[0] = starpu_data_get_sub_data(A_handle, 1, y);
  288. task->handles[1] = starpu_data_get_sub_data(B_handle, 1, x);
  289. task->handles[2] = starpu_data_get_sub_data(C_handle, 2, x, y);
  290. task->flops = 2ULL * (xdim/nslicesx) * (ydim/nslicesy) * zdim;
  291. ret = starpu_task_submit(task);
  292. if (ret == -ENODEV)
  293. {
  294. ret = 77;
  295. goto enodev;
  296. }
  297. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  298. starpu_data_wont_use(starpu_data_get_sub_data(C_handle, 2, x, y));
  299. }
  300. starpu_task_wait_for_all();
  301. }
  302. end = starpu_timing_now();
  303. if (bound)
  304. starpu_bound_stop();
  305. double timing = end - start;
  306. double min, min_int;
  307. double flops = 2.0*((unsigned long long)niter)*((unsigned long long)xdim)
  308. *((unsigned long long)ydim)*((unsigned long long)zdim);
  309. if (bound)
  310. starpu_bound_compute(&min, &min_int, 1);
  311. PRINTF("# x\ty\tz\tms\tGFlops");
  312. if (bound)
  313. PRINTF("\tTms\tTGFlops\tTims\tTiGFlops");
  314. PRINTF("\n");
  315. PRINTF("%u\t%u\t%u\t%.0f\t%.1f", xdim, ydim, zdim, timing/niter/1000.0, flops/timing/1000.0);
  316. if (bound)
  317. PRINTF("\t%.0f\t%.1f\t%.0f\t%.1f", min, flops/min/1000000.0, min_int, flops/min_int/1000000.0);
  318. PRINTF("\n");
  319. enodev:
  320. starpu_data_unpartition(C_handle, STARPU_MAIN_RAM);
  321. starpu_data_unpartition(B_handle, STARPU_MAIN_RAM);
  322. starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);
  323. starpu_data_unregister(A_handle);
  324. starpu_data_unregister(B_handle);
  325. starpu_data_unregister(C_handle);
  326. if (check)
  327. check_output();
  328. starpu_free_flags(A, zdim*ydim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  329. starpu_free_flags(B, xdim*zdim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  330. starpu_free_flags(C, xdim*ydim*sizeof(TYPE), STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  331. starpu_cublas_shutdown();
  332. starpu_shutdown();
  333. return ret;
  334. }