123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- /*
- * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
- *
- * NVIDIA Corporation and its licensors retain all intellectual property and
- * proprietary rights in and to this software and related documentation and
- * any modifications thereto. Any use, reproduction, disclosure, or distribution
- * of this software and related documentation without an express license
- * agreement from NVIDIA Corporation is strictly prohibited.
- *
- */
-
- /*
- * Portions Copyright (c) 1993-2009 NVIDIA Corporation. All rights reserved.
- * Portions Copyright (c) 2009 Mike Giles, Oxford University. All rights reserved.
- * Portions Copyright (c) 2008 Frances Y. Kuo and Stephen Joe. All rights reserved.
- *
- * Sobol Quasi-random Number Generator example
- *
- * Based on CUDA code submitted by Mike Giles, Oxford University, United Kingdom
- * http://people.maths.ox.ac.uk/~gilesm/
- *
- * and C code developed by Stephen Joe, University of Waikato, New Zealand
- * and Frances Kuo, University of New South Wales, Australia
- * http://web.maths.unsw.edu.au/~fkuo/sobol/
- *
- * For theoretical background see:
- *
- * P. Bratley and B.L. Fox.
- * Implementing Sobol's quasirandom sequence generator
- * http://portal.acm.org/citation.cfm?id=42288
- * ACM Trans. on Math. Software, 14(1):88-100, 1988
- *
- * S. Joe and F. Kuo.
- * Remark on algorithm 659: implementing Sobol's quasirandom sequence generator.
- * http://portal.acm.org/citation.cfm?id=641879
- * ACM Trans. on Math. Software, 29(1):49-57, 2003
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include <string.h>
- #include "sobol.h"
- #include "sobol_gold.h"
- #include "sobol_primitives.h"
- #define k_2powneg32 2.3283064E-10F
- // Create the direction numbers, based on the primitive polynomials.
- void initSobolDirectionVectors(int n_dimensions, unsigned int *directions)
- {
- unsigned int *v = directions;
- int dim;
- for (dim = 0 ; dim < n_dimensions ; dim++)
- {
- // First dimension is a special case
- if (dim == 0)
- {
- int i;
- for (i = 0 ; i < n_directions ; i++)
- {
- // All m's are 1
- v[i] = 1 << (31 - i);
- }
- }
- else
- {
- int d = sobol_primitives[dim].degree;
- // The first direction numbers (up to the degree of the polynomial)
- // are simply v[i] = m[i] / 2^i (stored in Q0.32 format)
- int i;
- for (i = 0 ; i < d ; i++)
- {
- v[i] = sobol_primitives[dim].m[i] << (31 - i);
- }
- // The remaining direction numbers are computed as described in
- // the Bratley and Fox paper.
- // v[i] = a[1]v[i-1] ^ a[2]v[i-2] ^ ... ^ a[v-1]v[i-d+1] ^ v[i-d] ^ v[i-d]/2^d
- for (i = d ; i < n_directions ; i++)
- {
- // First do the v[i-d] ^ v[i-d]/2^d part
- v[i] = v[i - d] ^ (v[i - d] >> d);
- // Now do the a[1]v[i-1] ^ a[2]v[i-2] ^ ... part
- // Note that the coefficients a[] are zero or one and for compactness in
- // the input tables they are stored as bits of a single integer. To extract
- // the relevant bit we use right shift and mask with 1.
- // For example, for a 10 degree polynomial there are ten useful bits in a,
- // so to get a[2] we need to right shift 7 times (to get the 8th bit into
- // the LSB) and then mask with 1.
- int j;
- for (j = 1 ; j < d ; j++)
- {
- v[i] ^= (((sobol_primitives[dim].a >> (d - 1 - j)) & 1) * v[i - j]);
- }
- }
- }
- v += n_directions;
- }
- }
- // Reference model for generating Sobol numbers on the host
- void sobolCPU(int n_vectors, int n_dimensions, unsigned int *directions, float *output)
- {
- unsigned int *v = directions;
- int d;
- for (d = 0 ; d < n_dimensions ; d++)
- {
- unsigned int X = 0;
- // x[0] is zero (in all dimensions)
- output[n_vectors * d] = 0.0;
- int i;
- for (i = 1 ; i < n_vectors ; i++)
- {
- // x[i] = x[i-1] ^ v[c]
- // where c is the index of the rightmost zero bit in i
- // minus 1 (since C arrays count from zero)
- // In the Bratley and Fox paper this is equation (**)
- X ^= v[ffs(~(i - 1)) - 1];
- output[i + n_vectors * d] = (float)X * k_2powneg32;
- }
- v += n_directions;
- }
- }
|