starpu.texi 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. * Function Index:: Index of C functions.
  38. @end menu
  39. @c ---------------------------------------------------------------------
  40. @c Introduction to StarPU
  41. @c ---------------------------------------------------------------------
  42. @node Introduction
  43. @chapter Introduction to StarPU
  44. @menu
  45. * Motivation:: Why StarPU ?
  46. * StarPU in a Nutshell:: The Fundamentals of StarPU
  47. @end menu
  48. @node Motivation
  49. @section Motivation
  50. @c complex machines with heterogeneous cores/devices
  51. The use of specialized hardware such as accelerators or coprocessors offers an
  52. interesting approach to overcome the physical limits encountered by processor
  53. architects. As a result, many machines are now equipped with one or several
  54. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  55. efforts have been devoted to offload computation onto such accelerators, very
  56. little attention as been paid to portability concerns on the one hand, and to the
  57. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  58. StarPU is a runtime system that offers support for heterogeneous multicore
  59. architectures, it not only offers a unified view of the computational resources
  60. (i.e. CPUs and accelerators at the same time), but it also takes care of
  61. efficiently mapping and executing tasks onto an heterogeneous machine while
  62. transparently handling low-level issues such as data transfers in a portable
  63. fashion.
  64. @c this leads to a complicated distributed memory design
  65. @c which is not (easily) manageable by hand
  66. @c added value/benefits of StarPU
  67. @c - portability
  68. @c - scheduling, perf. portability
  69. @node StarPU in a Nutshell
  70. @section StarPU in a Nutshell
  71. @menu
  72. * Codelet and Tasks::
  73. * StarPU Data Management Library::
  74. * Research Papers::
  75. @end menu
  76. From a programming point of view, StarPU is not a new language but a library
  77. that executes tasks explicitly submitted by the application. The data that a
  78. task manipulates are automatically transferred onto the accelerator so that the
  79. programmer does not have to take care of complex data movements. StarPU also
  80. takes particular care of scheduling those tasks efficiently and allows
  81. scheduling experts to implement custom scheduling policies in a portable
  82. fashion.
  83. @c explain the notion of codelet and task (i.e. g(A, B)
  84. @node Codelet and Tasks
  85. @subsection Codelet and Tasks
  86. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  87. computational kernel that can possibly be implemented on multiple architectures
  88. such as a CPU, a CUDA device or a Cell's SPU.
  89. @c TODO insert illustration f : f_spu, f_cpu, ...
  90. Another important data structure is the @b{task}. Executing a StarPU task
  91. consists in applying a codelet on a data set, on one of the architectures on
  92. which the codelet is implemented. In addition to the codelet that a task
  93. useuses, it also describes which data are accessed, and how they are
  94. accessed during the computation (read and/or write).
  95. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  96. operation. The task structure can also specify a @b{callback} function that is
  97. called once StarPU has properly executed the task. It also contains optional
  98. fields that the application may use to give hints to the scheduler (such as
  99. priority levels).
  100. A task may be identified by a unique 64-bit number chosen by the application
  101. which we refer as a @b{tag}.
  102. Task dependencies can be enforced either by the means of callback functions, by
  103. expressing dependencies between explicit tasks or by expressing dependencies
  104. between tags (which can thus correspond to tasks that have not been submitted
  105. yet).
  106. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  107. @c DSM
  108. @node StarPU Data Management Library
  109. @subsection StarPU Data Management Library
  110. Because StarPU schedules tasks at runtime, data transfers have to be
  111. done automatically and ``just-in-time'' between processing units,
  112. relieving the application programmer from explicit data transfers.
  113. Moreover, to avoid unnecessary transfers, StarPU keeps data
  114. where it was last needed, even if was modified there, and it
  115. allows multiple copies of the same data to reside at the same time on
  116. several processing units as long as it is not modified.
  117. @node Research Papers
  118. @subsection Research Papers
  119. Research papers about StarPU can be found at
  120. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  121. Notably a good overview in the research report
  122. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  123. @c ---------------------------------------------------------------------
  124. @c Installing StarPU
  125. @c ---------------------------------------------------------------------
  126. @node Installing StarPU
  127. @chapter Installing StarPU
  128. @menu
  129. * Downloading StarPU::
  130. * Configuration of StarPU::
  131. * Building and Installing StarPU::
  132. @end menu
  133. StarPU can be built and installed by the standard means of the GNU
  134. autotools. The following chapter is intended to briefly remind how these tools
  135. can be used to install StarPU.
  136. @node Downloading StarPU
  137. @section Downloading StarPU
  138. @menu
  139. * Getting Sources::
  140. * Optional dependencies::
  141. @end menu
  142. @node Getting Sources
  143. @subsection Getting Sources
  144. The simplest way to get StarPU sources is to download the latest official
  145. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  146. or the latest nightly snapshot from
  147. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  148. how to get the very latest version from the subversion repository itself, it
  149. should be needed only if you need the very latest changes (i.e. less than a
  150. day!)
  151. The source code is managed by a Subversion server hosted by the
  152. InriaGforge. To get the source code, you need:
  153. @itemize
  154. @item
  155. To install the client side of the software Subversion if it is
  156. not already available on your system. The software can be obtained from
  157. @indicateurl{http://subversion.tigris.org} . If you are running
  158. on Windows, you will probably prefer to use TortoiseSVN from
  159. @indicateurl{http://tortoisesvn.tigris.org/} .
  160. @item
  161. You can check out the project's SVN repository through anonymous
  162. access. This will provide you with a read access to the
  163. repository.
  164. If you need to have write access on the StarPU project, you can also choose to
  165. become a member of the project @code{starpu}. For this, you first need to get
  166. an account to the gForge server. You can then send a request to join the project
  167. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  168. @item
  169. More information on how to get a gForge account, to become a member of
  170. a project, or on any other related task can be obtained from the
  171. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  172. thing is to upload your public SSH key on the gForge server (see the
  173. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  174. instructions).
  175. @end itemize
  176. You can now check out the latest version from the Subversion server:
  177. @itemize
  178. @item
  179. using the anonymous access via svn:
  180. @example
  181. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  182. @end example
  183. @item
  184. using the anonymous access via https:
  185. @example
  186. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  187. @end example
  188. The password is @code{anonsvn}.
  189. @item
  190. using your gForge account
  191. @example
  192. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  193. @end example
  194. @end itemize
  195. The following step requires the availability of @code{autoconf} and
  196. @code{automake} to generate the @code{./configure} script. This is
  197. done by calling @code{./autogen.sh}. The required version for
  198. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  199. @example
  200. % ./autogen.sh
  201. @end example
  202. If the autotools are not available on your machine or not recent
  203. enough, you can choose to download the latest nightly tarball, which
  204. is provided with a @code{configure} script.
  205. @example
  206. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  207. @end example
  208. @node Optional dependencies
  209. @subsection Optional dependencies
  210. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  211. but strongly recommended. It allows to increase performance, and to
  212. perform some topology aware scheduling.
  213. @code{hwloc} is available in major distributions and for most OSes and can be
  214. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  215. @node Configuration of StarPU
  216. @section Configuration of StarPU
  217. @menu
  218. * Generating Makefiles and configuration scripts::
  219. * Running the configuration::
  220. @end menu
  221. @node Generating Makefiles and configuration scripts
  222. @subsection Generating Makefiles and configuration scripts
  223. This step is not necessary when using the tarball releases of StarPU. If you
  224. are using the source code from the svn repository, you first need to generate
  225. the configure scripts and the Makefiles.
  226. @example
  227. % ./autogen.sh
  228. @end example
  229. @node Running the configuration
  230. @subsection Running the configuration
  231. @example
  232. % ./configure
  233. @end example
  234. Details about options that are useful to give to @code{./configure} are given in
  235. @ref{Compilation configuration}.
  236. @node Building and Installing StarPU
  237. @section Building and Installing StarPU
  238. @menu
  239. * Building::
  240. * Sanity Checks::
  241. * Installing::
  242. @end menu
  243. @node Building
  244. @subsection Building
  245. @example
  246. % make
  247. @end example
  248. @node Sanity Checks
  249. @subsection Sanity Checks
  250. In order to make sure that StarPU is working properly on the system, it is also
  251. possible to run a test suite.
  252. @example
  253. % make check
  254. @end example
  255. @node Installing
  256. @subsection Installing
  257. In order to install StarPU at the location that was specified during
  258. configuration:
  259. @example
  260. % make install
  261. @end example
  262. @c ---------------------------------------------------------------------
  263. @c Using StarPU
  264. @c ---------------------------------------------------------------------
  265. @node Using StarPU
  266. @chapter Using StarPU
  267. @menu
  268. * Setting flags for compiling and linking applications::
  269. * Running a basic StarPU application::
  270. * Kernel threads started by StarPU::
  271. * Using accelerators::
  272. @end menu
  273. @node Setting flags for compiling and linking applications
  274. @section Setting flags for compiling and linking applications
  275. Compiling and linking an application against StarPU may require to use
  276. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  277. To this end, it is possible to use the @code{pkg-config} tool.
  278. If StarPU was not installed at some standard location, the path of StarPU's
  279. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  280. that @code{pkg-config} can find it. For example if StarPU was installed in
  281. @code{$prefix_dir}:
  282. @example
  283. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  284. @end example
  285. The flags required to compile or link against StarPU are then
  286. accessible with the following commands:
  287. @example
  288. % pkg-config --cflags libstarpu # options for the compiler
  289. % pkg-config --libs libstarpu # options for the linker
  290. @end example
  291. @node Running a basic StarPU application
  292. @section Running a basic StarPU application
  293. Basic examples using StarPU have been built in the directory
  294. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  295. example @code{vector_scal}.
  296. @example
  297. % $prefix_dir/lib/starpu/examples/vector_scal
  298. BEFORE : First element was 1.000000
  299. AFTER First element is 3.140000
  300. %
  301. @end example
  302. When StarPU is used for the first time, the directory
  303. @code{$HOME/.starpu/} is created, performance models will be stored in
  304. that directory.
  305. Please note that buses are benchmarked when StarPU is launched for the
  306. first time. This may take a few minutes, or less if @code{hwloc} is
  307. installed. This step is done only once per user and per machine.
  308. @node Kernel threads started by StarPU
  309. @section Kernel threads started by StarPU
  310. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  311. them per GPU. The application is not supposed to do computations in its own
  312. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  313. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  314. worker).
  315. @node Using accelerators
  316. @section Using accelerators
  317. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  318. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  319. This design choice was necessary as OpenCL and CUDA can not run at the
  320. same time on the same NVIDIA GPU, as there is currently no interoperability
  321. between them.
  322. Details on how to specify devices running OpenCL and the ones running
  323. CUDA are given in @ref{Enabling OpenCL}.
  324. @c ---------------------------------------------------------------------
  325. @c Basic Examples
  326. @c ---------------------------------------------------------------------
  327. @node Basic Examples
  328. @chapter Basic Examples
  329. @menu
  330. * Compiling and linking options::
  331. * Hello World:: Submitting Tasks
  332. * Scaling a Vector:: Manipulating Data
  333. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  334. * Task and Worker Profiling::
  335. * Partitioning Data:: Partitioning Data
  336. * Performance model example::
  337. * Theoretical lower bound on execution time::
  338. * Insert Task Utility::
  339. * More examples:: More examples shipped with StarPU
  340. @end menu
  341. @node Compiling and linking options
  342. @section Compiling and linking options
  343. Let's suppose StarPU has been installed in the directory
  344. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  345. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  346. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  347. libraries at runtime.
  348. @example
  349. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  350. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  351. @end example
  352. The Makefile could for instance contain the following lines to define which
  353. options must be given to the compiler and to the linker:
  354. @cartouche
  355. @example
  356. CFLAGS += $$(pkg-config --cflags libstarpu)
  357. LDFLAGS += $$(pkg-config --libs libstarpu)
  358. @end example
  359. @end cartouche
  360. @node Hello World
  361. @section Hello World
  362. @menu
  363. * Required Headers::
  364. * Defining a Codelet::
  365. * Submitting a Task::
  366. * Execution of Hello World::
  367. @end menu
  368. In this section, we show how to implement a simple program that submits a task to StarPU.
  369. @node Required Headers
  370. @subsection Required Headers
  371. The @code{starpu.h} header should be included in any code using StarPU.
  372. @cartouche
  373. @smallexample
  374. #include <starpu.h>
  375. @end smallexample
  376. @end cartouche
  377. @node Defining a Codelet
  378. @subsection Defining a Codelet
  379. @cartouche
  380. @smallexample
  381. struct params @{
  382. int i;
  383. float f;
  384. @};
  385. void cpu_func(void *buffers[], void *cl_arg)
  386. @{
  387. struct params *params = cl_arg;
  388. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  389. @}
  390. starpu_codelet cl =
  391. @{
  392. .where = STARPU_CPU,
  393. .cpu_func = cpu_func,
  394. .nbuffers = 0
  395. @};
  396. @end smallexample
  397. @end cartouche
  398. A codelet is a structure that represents a computational kernel. Such a codelet
  399. may contain an implementation of the same kernel on different architectures
  400. (e.g. CUDA, Cell's SPU, x86, ...).
  401. The @code{nbuffers} field specifies the number of data buffers that are
  402. manipulated by the codelet: here the codelet does not access or modify any data
  403. that is controlled by our data management library. Note that the argument
  404. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  405. structure) does not count as a buffer since it is not managed by our data
  406. management library, but just contain trivial parameters.
  407. @c TODO need a crossref to the proper description of "where" see bla for more ...
  408. We create a codelet which may only be executed on the CPUs. The @code{where}
  409. field is a bitmask that defines where the codelet may be executed. Here, the
  410. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  411. (@pxref{Codelets and Tasks} for more details on this field).
  412. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  413. which @emph{must} have the following prototype:
  414. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  415. In this example, we can ignore the first argument of this function which gives a
  416. description of the input and output buffers (e.g. the size and the location of
  417. the matrices) since there is none.
  418. The second argument is a pointer to a buffer passed as an
  419. argument to the codelet by the means of the @code{cl_arg} field of the
  420. @code{starpu_task} structure.
  421. @c TODO rewrite so that it is a little clearer ?
  422. Be aware that this may be a pointer to a
  423. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  424. if the codelet modifies this buffer, there is no guarantee that the initial
  425. buffer will be modified as well: this for instance implies that the buffer
  426. cannot be used as a synchronization medium. If synchronization is needed, data
  427. has to be registered to StarPU, see @ref{Scaling a Vector}.
  428. @node Submitting a Task
  429. @subsection Submitting a Task
  430. @cartouche
  431. @smallexample
  432. void callback_func(void *callback_arg)
  433. @{
  434. printf("Callback function (arg %x)\n", callback_arg);
  435. @}
  436. int main(int argc, char **argv)
  437. @{
  438. /* @b{initialize StarPU} */
  439. starpu_init(NULL);
  440. struct starpu_task *task = starpu_task_create();
  441. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  442. struct params params = @{ 1, 2.0f @};
  443. task->cl_arg = &params;
  444. task->cl_arg_size = sizeof(params);
  445. task->callback_func = callback_func;
  446. task->callback_arg = 0x42;
  447. /* @b{starpu_task_submit will be a blocking call} */
  448. task->synchronous = 1;
  449. /* @b{submit the task to StarPU} */
  450. starpu_task_submit(task);
  451. /* @b{terminate StarPU} */
  452. starpu_shutdown();
  453. return 0;
  454. @}
  455. @end smallexample
  456. @end cartouche
  457. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  458. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  459. be submitted after the termination of StarPU by a call to
  460. @code{starpu_shutdown}.
  461. In the example above, a task structure is allocated by a call to
  462. @code{starpu_task_create}. This function only allocates and fills the
  463. corresponding structure with the default settings (@pxref{starpu_task_create}),
  464. but it does not submit the task to StarPU.
  465. @c not really clear ;)
  466. The @code{cl} field is a pointer to the codelet which the task will
  467. execute: in other words, the codelet structure describes which computational
  468. kernel should be offloaded on the different architectures, and the task
  469. structure is a wrapper containing a codelet and the piece of data on which the
  470. codelet should operate.
  471. The optional @code{cl_arg} field is a pointer to a buffer (of size
  472. @code{cl_arg_size}) with some parameters for the kernel
  473. described by the codelet. For instance, if a codelet implements a computational
  474. kernel that multiplies its input vector by a constant, the constant could be
  475. specified by the means of this buffer, instead of registering it as a StarPU
  476. data. It must however be noted that StarPU avoids making copy whenever possible
  477. and rather passes the pointer as such, so the buffer which is pointed at must
  478. kept allocated until the task terminates, and if several tasks are submitted
  479. with various parameters, each of them must be given a pointer to their own
  480. buffer.
  481. Once a task has been executed, an optional callback function is be called.
  482. While the computational kernel could be offloaded on various architectures, the
  483. callback function is always executed on a CPU. The @code{callback_arg}
  484. pointer is passed as an argument of the callback. The prototype of a callback
  485. function must be:
  486. @code{void (*callback_function)(void *);}
  487. If the @code{synchronous} field is non-zero, task submission will be
  488. synchronous: the @code{starpu_task_submit} function will not return until the
  489. task was executed. Note that the @code{starpu_shutdown} method does not
  490. guarantee that asynchronous tasks have been executed before it returns,
  491. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  492. acquired (@code{starpu_data_acquire(vector_handle, STARPU_R);}), which will
  493. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  494. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  495. @code{starpu_data_set_sequential_consistency_flag}.
  496. @node Execution of Hello World
  497. @subsection Execution of Hello World
  498. @smallexample
  499. % make hello_world
  500. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  501. % ./hello_world
  502. Hello world (params = @{1, 2.000000@} )
  503. Callback function (arg 42)
  504. @end smallexample
  505. @node Scaling a Vector
  506. @section Manipulating Data: Scaling a Vector
  507. The previous example has shown how to submit tasks. In this section,
  508. we show how StarPU tasks can manipulate data. The full source code for
  509. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  510. @menu
  511. * Source code of Vector Scaling::
  512. * Execution of Vector Scaling::
  513. @end menu
  514. @node Source code of Vector Scaling
  515. @subsection Source code of Vector Scaling
  516. Programmers can describe the data layout of their application so that StarPU is
  517. responsible for enforcing data coherency and availability across the machine.
  518. Instead of handling complex (and non-portable) mechanisms to perform data
  519. movements, programmers only declare which piece of data is accessed and/or
  520. modified by a task, and StarPU makes sure that when a computational kernel
  521. starts somewhere (e.g. on a GPU), its data are available locally.
  522. Before submitting those tasks, the programmer first needs to declare the
  523. different pieces of data to StarPU using the @code{starpu_*_data_register}
  524. functions. To ease the development of applications for StarPU, it is possible
  525. to describe multiple types of data layout. A type of data layout is called an
  526. @b{interface}. There are different predefined interfaces available in StarPU:
  527. here we will consider the @b{vector interface}.
  528. The following lines show how to declare an array of @code{NX} elements of type
  529. @code{float} using the vector interface:
  530. @cartouche
  531. @smallexample
  532. float vector[NX];
  533. starpu_data_handle vector_handle;
  534. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  535. sizeof(vector[0]));
  536. @end smallexample
  537. @end cartouche
  538. The first argument, called the @b{data handle}, is an opaque pointer which
  539. designates the array in StarPU. This is also the structure which is used to
  540. describe which data is used by a task. The second argument is the node number
  541. where the data originally resides. Here it is 0 since the @code{vector} array is in
  542. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  543. the number of elements in the vector and the size of each element.
  544. The following shows how to construct a StarPU task that will manipulate the
  545. vector and a constant factor.
  546. @cartouche
  547. @smallexample
  548. float factor = 3.14;
  549. struct starpu_task *task = starpu_task_create();
  550. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  551. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  552. task->buffers[0].mode = STARPU_RW;
  553. task->cl_arg = &factor;
  554. task->cl_arg_size = sizeof(factor);
  555. task->synchronous = 1;
  556. starpu_task_submit(task);
  557. @end smallexample
  558. @end cartouche
  559. Since the factor is a mere constant float value parameter,
  560. it does not need a preliminary registration, and
  561. can just be passed through the @code{cl_arg} pointer like in the previous
  562. example. The vector parameter is described by its handle.
  563. There are two fields in each element of the @code{buffers} array.
  564. @code{handle} is the handle of the data, and @code{mode} specifies how the
  565. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  566. write-only and @code{STARPU_RW} for read and write access).
  567. The definition of the codelet can be written as follows:
  568. @cartouche
  569. @smallexample
  570. void scal_cpu_func(void *buffers[], void *cl_arg)
  571. @{
  572. unsigned i;
  573. float *factor = cl_arg;
  574. /* length of the vector */
  575. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  576. /* local copy of the vector pointer */
  577. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  578. for (i = 0; i < n; i++)
  579. val[i] *= *factor;
  580. @}
  581. starpu_codelet cl = @{
  582. .where = STARPU_CPU,
  583. .cpu_func = scal_cpu_func,
  584. .nbuffers = 1
  585. @};
  586. @end smallexample
  587. @end cartouche
  588. The first argument is an array that gives
  589. a description of all the buffers passed in the @code{task->buffers}@ array. The
  590. size of this array is given by the @code{nbuffers} field of the codelet
  591. structure. For the sake of genericity, this array contains pointers to the
  592. different interfaces describing each buffer. In the case of the @b{vector
  593. interface}, the location of the vector (resp. its length) is accessible in the
  594. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  595. read-write fashion, any modification will automatically affect future accesses
  596. to this vector made by other tasks.
  597. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  598. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  599. constant factor from this pointer.
  600. @node Execution of Vector Scaling
  601. @subsection Execution of Vector Scaling
  602. @smallexample
  603. % make vector_scal
  604. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  605. % ./vector_scal
  606. 0.000000 3.000000 6.000000 9.000000 12.000000
  607. @end smallexample
  608. @node Vector Scaling on an Hybrid CPU/GPU Machine
  609. @section Vector Scaling on an Hybrid CPU/GPU Machine
  610. Contrary to the previous examples, the task submitted in this example may not
  611. only be executed by the CPUs, but also by a CUDA device.
  612. @menu
  613. * Definition of the CUDA Kernel::
  614. * Definition of the OpenCL Kernel::
  615. * Definition of the Main Code::
  616. * Execution of Hybrid Vector Scaling::
  617. @end menu
  618. @node Definition of the CUDA Kernel
  619. @subsection Definition of the CUDA Kernel
  620. The CUDA implementation can be written as follows. It needs to be
  621. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  622. driver.
  623. @cartouche
  624. @smallexample
  625. #include <starpu.h>
  626. static __global__ void vector_mult_cuda(float *val, unsigned n,
  627. float factor)
  628. @{
  629. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  630. if (i < n)
  631. val[i] *= factor;
  632. @}
  633. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  634. @{
  635. float *factor = (float *)_args;
  636. /* length of the vector */
  637. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  638. /* local copy of the vector pointer */
  639. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  640. unsigned threads_per_block = 64;
  641. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  642. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  643. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  644. @}
  645. @end smallexample
  646. @end cartouche
  647. @node Definition of the OpenCL Kernel
  648. @subsection Definition of the OpenCL Kernel
  649. The OpenCL implementation can be written as follows. StarPU provides
  650. tools to compile a OpenCL kernel stored in a file.
  651. @cartouche
  652. @smallexample
  653. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  654. @{
  655. const int i = get_global_id(0);
  656. if (i < nx) @{
  657. val[i] *= factor;
  658. @}
  659. @}
  660. @end smallexample
  661. @end cartouche
  662. @cartouche
  663. @smallexample
  664. #include <starpu.h>
  665. @i{#include <starpu_opencl.h>}
  666. @i{extern struct starpu_opencl_program programs;}
  667. void scal_opencl_func(void *buffers[], void *_args)
  668. @{
  669. float *factor = _args;
  670. @i{ int id, devid, err;}
  671. @i{ cl_kernel kernel;}
  672. @i{ cl_command_queue queue;}
  673. @i{ cl_event event;}
  674. /* length of the vector */
  675. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  676. /* local copy of the vector pointer */
  677. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  678. @i{ id = starpu_worker_get_id();}
  679. @i{ devid = starpu_worker_get_devid(id);}
  680. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  681. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  684. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  685. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  686. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  687. @i{ @{}
  688. @i{ size_t global=1;}
  689. @i{ size_t local=1;}
  690. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  691. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  692. @i{ @}}
  693. @i{ clFinish(queue);}
  694. @i{ starpu_opencl_collect_stats(event);}
  695. @i{ clReleaseEvent(event);}
  696. @i{ starpu_opencl_release_kernel(kernel);}
  697. @}
  698. @end smallexample
  699. @end cartouche
  700. @node Definition of the Main Code
  701. @subsection Definition of the Main Code
  702. The CPU implementation is the same as in the previous section.
  703. Here is the source of the main application. You can notice the value of the
  704. field @code{where} for the codelet. We specify
  705. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  706. can be executed either on a CPU or on a CUDA or an OpenCL device.
  707. @cartouche
  708. @smallexample
  709. #include <starpu.h>
  710. #define NX 2048
  711. extern void scal_cuda_func(void *buffers[], void *_args);
  712. extern void scal_cpu_func(void *buffers[], void *_args);
  713. extern void scal_opencl_func(void *buffers[], void *_args);
  714. /* @b{Definition of the codelet} */
  715. static starpu_codelet cl = @{
  716. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  717. /* @b{on a CUDA device, or on an OpenCL device} */
  718. .cuda_func = scal_cuda_func;
  719. .cpu_func = scal_cpu_func;
  720. .opencl_func = scal_opencl_func;
  721. .nbuffers = 1;
  722. @}
  723. #ifdef STARPU_USE_OPENCL
  724. /* @b{The compiled version of the OpenCL program} */
  725. struct starpu_opencl_program programs;
  726. #endif
  727. int main(int argc, char **argv)
  728. @{
  729. float *vector;
  730. int i, ret;
  731. float factor=3.0;
  732. struct starpu_task *task;
  733. starpu_data_handle vector_handle;
  734. starpu_init(NULL); /* @b{Initialising StarPU} */
  735. #ifdef STARPU_USE_OPENCL
  736. starpu_opencl_load_opencl_from_file(
  737. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  738. &programs, NULL);
  739. #endif
  740. vector = malloc(NX*sizeof(vector[0]));
  741. assert(vector);
  742. for(i=0 ; i<NX ; i++) vector[i] = i;
  743. @end smallexample
  744. @end cartouche
  745. @cartouche
  746. @smallexample
  747. /* @b{Registering data within StarPU} */
  748. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  749. NX, sizeof(vector[0]));
  750. /* @b{Definition of the task} */
  751. task = starpu_task_create();
  752. task->cl = &cl;
  753. task->buffers[0].handle = vector_handle;
  754. task->buffers[0].mode = STARPU_RW;
  755. task->cl_arg = &factor;
  756. task->cl_arg_size = sizeof(factor);
  757. @end smallexample
  758. @end cartouche
  759. @cartouche
  760. @smallexample
  761. /* @b{Submitting the task} */
  762. ret = starpu_task_submit(task);
  763. if (ret == -ENODEV) @{
  764. fprintf(stderr, "No worker may execute this task\n");
  765. return 1;
  766. @}
  767. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  768. /* @b{Waiting for its termination} */
  769. starpu_task_wait_for_all();
  770. /* @b{Update the vector in RAM} */
  771. starpu_data_acquire(vector_handle, STARPU_R);
  772. @end smallexample
  773. @end cartouche
  774. @cartouche
  775. @smallexample
  776. /* @b{Access the data} */
  777. for(i=0 ; i<NX; i++) @{
  778. fprintf(stderr, "%f ", vector[i]);
  779. @}
  780. fprintf(stderr, "\n");
  781. /* @b{Release the data and shutdown StarPU} */
  782. starpu_data_release(vector_handle);
  783. starpu_shutdown();
  784. return 0;
  785. @}
  786. @end smallexample
  787. @end cartouche
  788. @node Execution of Hybrid Vector Scaling
  789. @subsection Execution of Hybrid Vector Scaling
  790. The Makefile given at the beginning of the section must be extended to
  791. give the rules to compile the CUDA source code. Note that the source
  792. file of the OpenCL kernel does not need to be compiled now, it will
  793. be compiled at run-time when calling the function
  794. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  795. @cartouche
  796. @smallexample
  797. CFLAGS += $(shell pkg-config --cflags libstarpu)
  798. LDFLAGS += $(shell pkg-config --libs libstarpu)
  799. CC = gcc
  800. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  801. %.o: %.cu
  802. nvcc $(CFLAGS) $< -c $@
  803. clean:
  804. rm -f vector_scal *.o
  805. @end smallexample
  806. @end cartouche
  807. @smallexample
  808. % make
  809. @end smallexample
  810. and to execute it, with the default configuration:
  811. @smallexample
  812. % ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. or for example, by disabling CPU devices:
  816. @smallexample
  817. % STARPU_NCPUS=0 ./vector_scal
  818. 0.000000 3.000000 6.000000 9.000000 12.000000
  819. @end smallexample
  820. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  821. see @ref{Using accelerators}):
  822. @smallexample
  823. % STARPU_NCUDA=0 ./vector_scal
  824. 0.000000 3.000000 6.000000 9.000000 12.000000
  825. @end smallexample
  826. @node Task and Worker Profiling
  827. @section Task and Worker Profiling
  828. A full example showing how to use the profiling API is available in
  829. the StarPU sources in the directory @code{examples/profiling/}.
  830. @cartouche
  831. @smallexample
  832. struct starpu_task *task = starpu_task_create();
  833. task->cl = &cl;
  834. task->synchronous = 1;
  835. /* We will destroy the task structure by hand so that we can
  836. * query the profiling info before the task is destroyed. */
  837. task->destroy = 0;
  838. /* Submit and wait for completion (since synchronous was set to 1) */
  839. starpu_task_submit(task);
  840. /* The task is finished, get profiling information */
  841. struct starpu_task_profiling_info *info = task->profiling_info;
  842. /* How much time did it take before the task started ? */
  843. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  844. /* How long was the task execution ? */
  845. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  846. /* We don't need the task structure anymore */
  847. starpu_task_destroy(task);
  848. @end smallexample
  849. @end cartouche
  850. @cartouche
  851. @smallexample
  852. /* Display the occupancy of all workers during the test */
  853. int worker;
  854. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  855. @{
  856. struct starpu_worker_profiling_info worker_info;
  857. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  858. STARPU_ASSERT(!ret);
  859. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  860. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  861. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  862. float executing_ratio = 100.0*executing_time/total_time;
  863. float sleeping_ratio = 100.0*sleeping_time/total_time;
  864. char workername[128];
  865. starpu_worker_get_name(worker, workername, 128);
  866. fprintf(stderr, "Worker %s:\n", workername);
  867. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  868. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  869. executing_ratio);
  870. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  871. sleeping_ratio);
  872. @}
  873. @end smallexample
  874. @end cartouche
  875. @node Partitioning Data
  876. @section Partitioning Data
  877. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  878. @cartouche
  879. @smallexample
  880. int vector[NX];
  881. starpu_data_handle handle;
  882. /* Declare data to StarPU */
  883. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  884. /* Partition the vector in PARTS sub-vectors */
  885. starpu_filter f =
  886. @{
  887. .filter_func = starpu_block_filter_func_vector,
  888. .nchildren = PARTS,
  889. .get_nchildren = NULL,
  890. .get_child_ops = NULL
  891. @};
  892. starpu_data_partition(handle, &f);
  893. @end smallexample
  894. @end cartouche
  895. @cartouche
  896. @smallexample
  897. /* Submit a task on each sub-vector */
  898. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  899. /* Get subdata number i (there is only 1 dimension) */
  900. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  901. struct starpu_task *task = starpu_task_create();
  902. task->buffers[0].handle = sub_handle;
  903. task->buffers[0].mode = STARPU_RW;
  904. task->cl = &cl;
  905. task->synchronous = 1;
  906. task->cl_arg = &factor;
  907. task->cl_arg_size = sizeof(factor);
  908. starpu_task_submit(task);
  909. @}
  910. @end smallexample
  911. @end cartouche
  912. Partitioning can be applied several times, see
  913. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  914. @node Performance model example
  915. @section Performance model example
  916. To achieve good scheduling, StarPU scheduling policies need to be able to
  917. estimate in advance the duration of a task. This is done by giving to codelets a
  918. performance model. There are several kinds of performance models.
  919. @itemize
  920. @item
  921. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  922. see for instance
  923. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  924. @item
  925. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  926. given set of data input/output sizes, the performance will always be about the
  927. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  928. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  929. few different sets of data input/output sizes. StarPU will then keep record of
  930. the average time of previous executions on the various processing units, and use
  931. it as an estimation. History is done per task size, by using a hash of the input
  932. and ouput sizes as an index.
  933. It will also save it in @code{~/.starpu/sampling/codelets}
  934. for further executions, and can be observed by using the
  935. @code{starpu_perfmodel_display} command. The following is a small code example.
  936. @cartouche
  937. @smallexample
  938. static struct starpu_perfmodel_t mult_perf_model = @{
  939. .type = STARPU_HISTORY_BASED,
  940. .symbol = "mult_perf_model"
  941. @};
  942. starpu_codelet cl = @{
  943. .where = STARPU_CPU,
  944. .cpu_func = cpu_mult,
  945. .nbuffers = 3,
  946. /* for the scheduling policy to be able to use performance models */
  947. .model = &mult_perf_model
  948. @};
  949. @end smallexample
  950. @end cartouche
  951. @item
  952. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  953. type). This still assumes performance regularity, but can work with various data
  954. input sizes, by applying a*n^b+c regression over observed execution times.
  955. @end itemize
  956. How to use schedulers which can benefit from such performance model is explained
  957. in @ref{Task scheduling policy}.
  958. The same can be done for task power consumption estimation, by setting the
  959. @code{power_model} field the same way as the @code{model} field. Note: for
  960. now, the application has to give to the power consumption performance model
  961. a name which is different from the execution time performance model.
  962. @node Theoretical lower bound on execution time
  963. @section Theoretical lower bound on execution time
  964. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  965. bound for the execution time of a whole set of tasks. See for
  966. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  967. call @code{starpu_bound_start}, and after complete execution, call
  968. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  969. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  970. problem corresponding to the schedule of your tasks. Run it through
  971. @code{lp_solve} or any other linear programming solver, and that will give you a
  972. lower bound for the total execution time of your tasks. If StarPU was compiled
  973. with the glpk library installed, @code{starpu_bound_compute} can be used to
  974. solve it immediately and get the optimized minimum. Its @code{integer}
  975. parameter allows to decide whether integer resolution should be computed
  976. and returned.
  977. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  978. dependencies into account. It must be understood that the linear programming
  979. problem size is quadratic with the number of tasks and thus the time to solve it
  980. will be very long, it could be minutes for just a few dozen tasks. You should
  981. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  982. problem to MPS format and then use a better solver, @code{glpsol} might be
  983. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  984. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  985. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  986. of @code{lp_solve}. For instance, we often just use
  987. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  988. the @code{-gr} option can also be quite useful.
  989. Setting @code{deps} to 0 will only take into account the actual computations
  990. on processing units. It however still properly takes into account the varying
  991. performances of kernels and processing units, which is quite more accurate than
  992. just comparing StarPU performances with the fastest of the kernels being used.
  993. The @code{prio} parameter tells StarPU whether to simulate taking into account
  994. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  995. tasks before less prioritized tasks, to check to which extend this results
  996. to a less optimal solution. This increases even more computation time.
  997. Note that for simplicity, all this however doesn't take into account data
  998. transfers, which are assumed to be completely overlapped.
  999. @node Insert Task Utility
  1000. @section Insert Task Utility
  1001. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1002. the creation and submission of tasks.
  1003. @deftypefun int starpu_insert_task (starpu_codelet *cl, ...)
  1004. Create and submit a task corresponding to @var{cl} with the following
  1005. arguments. The argument list must be zero-terminated.
  1006. The arguments following the codelets can be of the following types:
  1007. @itemize
  1008. @item
  1009. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  1010. @item
  1011. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1012. the size of the constant;
  1013. @item
  1014. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1015. @item
  1016. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1017. argument to the callback function;
  1018. @item
  1019. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1020. @end itemize
  1021. Parameters to be passed to the codelet implementation are defined
  1022. through the type @code{STARPU_VALUE}. The function
  1023. @code{starpu_unpack_cl_args} must be called within the codelet
  1024. implementation to retrieve them.
  1025. @end deftypefun
  1026. Here the implementation of the codelet:
  1027. @smallexample
  1028. void func_cpu(void *descr[], void *_args)
  1029. @{
  1030. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1031. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1032. int ifactor;
  1033. float ffactor;
  1034. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1035. *x0 = *x0 * ifactor;
  1036. *x1 = *x1 * ffactor;
  1037. @}
  1038. starpu_codelet mycodelet = @{
  1039. .where = STARPU_CPU,
  1040. .cpu_func = func_cpu,
  1041. .nbuffers = 2
  1042. @};
  1043. @end smallexample
  1044. And the call to the @code{starpu_insert_task} wrapper:
  1045. @smallexample
  1046. starpu_insert_task(&mycodelet,
  1047. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1048. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1049. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1050. 0);
  1051. @end smallexample
  1052. The call to @code{starpu_insert_task} is equivalent to the following
  1053. code:
  1054. @smallexample
  1055. struct starpu_task *task = starpu_task_create();
  1056. task->cl = &mycodelet;
  1057. task->buffers[0].handle = data_handles[0];
  1058. task->buffers[0].mode = STARPU_RW;
  1059. task->buffers[1].handle = data_handles[1];
  1060. task->buffers[1].mode = STARPU_RW;
  1061. char *arg_buffer;
  1062. size_t arg_buffer_size;
  1063. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1064. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1065. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1066. 0);
  1067. task->cl_arg = arg_buffer;
  1068. task->cl_arg_size = arg_buffer_size;
  1069. int ret = starpu_task_submit(task);
  1070. @end smallexample
  1071. @node More examples
  1072. @section More examples
  1073. More examples are available in the StarPU sources in the @code{examples/}
  1074. directory. Simple examples include:
  1075. @table @asis
  1076. @item @code{incrementer/}:
  1077. Trivial incrementation test.
  1078. @item @code{basic_examples/}:
  1079. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1080. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1081. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1082. interface, and an example using the variable data interface.
  1083. @item @code{matvecmult/}:
  1084. OpenCL example from NVidia, adapted to StarPU.
  1085. @item @code{axpy/}:
  1086. AXPY CUBLAS operation adapted to StarPU.
  1087. @item @code{fortran/}:
  1088. Example of Fortran bindings.
  1089. @end table
  1090. More advanced examples include:
  1091. @table @asis
  1092. @item @code{filters/}:
  1093. Examples using filters, as shown in @ref{Partitioning Data}.
  1094. @item @code{lu/}:
  1095. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1096. @item @code{cholesky/}:
  1097. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1098. @end table
  1099. @c ---------------------------------------------------------------------
  1100. @c Performance options
  1101. @c ---------------------------------------------------------------------
  1102. @node Performance optimization
  1103. @chapter How to optimize performance with StarPU
  1104. TODO: improve!
  1105. @menu
  1106. * Data management::
  1107. * Task submission::
  1108. * Task priorities::
  1109. * Task scheduling policy::
  1110. * Task distribution vs Data transfer::
  1111. * Power-based scheduling::
  1112. * Profiling::
  1113. * CUDA-specific optimizations::
  1114. @end menu
  1115. Simply encapsulating application kernels into tasks already permits to
  1116. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1117. few additional changes are needed.
  1118. @node Data management
  1119. @section Data management
  1120. By default, StarPU does not enable data prefetching, because CUDA does
  1121. not announce when too many data transfers were scheduled and can thus block
  1122. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1123. .
  1124. By default, StarPU leaves replicates of data wherever they were used, in case they
  1125. will be re-used by other tasks, thus saving the data transfer time. When some
  1126. task modifies some data, all the other replicates are invalidated, and only the
  1127. processing unit will have a valid replicate of the data. If the application knows
  1128. that this data will not be re-used by further tasks, it should advise StarPU to
  1129. immediately replicate it to a desired list of memory nodes (given through a
  1130. bitmask). This can be understood like the write-through mode of CPU caches.
  1131. @example
  1132. starpu_data_set_wt_mask(img_handle, 1<<0);
  1133. @end example
  1134. will for instance request to always transfer a replicate into the main memory (node
  1135. 0), as bit 0 of the write-through bitmask is being set.
  1136. When the application allocates data, whenever possible it should use the
  1137. @code{starpu_malloc} function, which will ask CUDA or
  1138. OpenCL to make the allocation itself and pin the corresponding allocated
  1139. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1140. transfer to overlap with computations.
  1141. @node Task submission
  1142. @section Task submission
  1143. To let StarPU make online optimizations, tasks should be submitted
  1144. asynchronously as much as possible. Ideally, all the tasks should be
  1145. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1146. @code{starpu_data_acquire} be done to wait for
  1147. termination. StarPU will then be able to rework the whole schedule, overlap
  1148. computation with communication, manage accelerator local memory usage, etc.
  1149. @node Task priorities
  1150. @section Task priorities
  1151. By default, StarPU will consider the tasks in the order they are submitted by
  1152. the application. If the application programmer knows that some tasks should
  1153. be performed in priority (for instance because their output is needed by many
  1154. other tasks and may thus be a bottleneck if not executed early enough), the
  1155. @code{priority} field of the task structure should be set to transmit the
  1156. priority information to StarPU.
  1157. @node Task scheduling policy
  1158. @section Task scheduling policy
  1159. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1160. because it provides correct load balance even if the application codelets do not
  1161. have performance models. If your application codelets have performance models
  1162. (@pxref{Performance model example} for examples showing how to do it),
  1163. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1164. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1165. the list of available schedulers.
  1166. @c TODO: give some details about each scheduler.
  1167. Most schedulers are based on an estimation of codelet duration on each kind
  1168. of processing unit. For this to be possible, the application programmer needs
  1169. to configure a performance model for the codelets of the application (see
  1170. @ref{Performance model example} for instance). History-based performance models
  1171. use on-line calibration. StarPU will automatically calibrate codelets
  1172. which have never been calibrated yet. To force continuing calibration, use
  1173. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1174. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1175. Note: due to CUDA limitations, to be able to measure kernel duration,
  1176. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1177. disables data transfer / computation overlapping, and should thus not be used
  1178. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1179. only if a performance-model-based scheduler is chosen.
  1180. @node Task distribution vs Data transfer
  1181. @section Task distribution vs Data transfer
  1182. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1183. thus needs to find a balance between both. The target function that the
  1184. @code{dmda} scheduler of StarPU
  1185. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1186. @code{T_execution} is the estimated execution time of the codelet (usually
  1187. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1188. latter is however estimated based on bus calibration before execution start,
  1189. i.e. with an idle machine. You can force bus re-calibration by running
  1190. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1191. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1192. This is of course imprecise, but in practice, a rough estimation already gives
  1193. the good results that a precise estimation would give.
  1194. @node Power-based scheduling
  1195. @section Power-based scheduling
  1196. If the application can provide some power performance model (through
  1197. the @code{power_model} field of the codelet structure), StarPU will
  1198. take it into account when distributing tasks. The target function that
  1199. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1200. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1201. is the estimated task consumption in Joules. To tune this parameter, use
  1202. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1203. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1204. alpha and beta to zero permits to only take into account power consumption.
  1205. This is however not sufficient to correctly optimize power: the scheduler would
  1206. simply tend to run all computations on the most energy-conservative processing
  1207. unit. To account for the consumption of the whole machine (including idle
  1208. processing units), the idle power of the machine should be given by setting
  1209. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1210. be obtained from the machine power supplier.
  1211. The power actually consumed by the total execution can be displayed by setting
  1212. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1213. @node Profiling
  1214. @section Profiling
  1215. A quick view of how many tasks each worker has executed can be obtained by setting
  1216. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1217. execution did happen on accelerators without penalizing performance with
  1218. the profiling overhead.
  1219. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1220. calling @code{starpu_profiling_status_set} from the source code.
  1221. Statistics on the execution can then be obtained by using @code{export
  1222. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1223. More details on performance feedback are provided by the next chapter.
  1224. @node CUDA-specific optimizations
  1225. @section CUDA-specific optimizations
  1226. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1227. communications and the codelet computations if the application does not use a
  1228. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1229. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1230. operations. For instance:
  1231. @example
  1232. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1233. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1234. @end example
  1235. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1236. kernels. That will lower the potential for overlapping.
  1237. @c ---------------------------------------------------------------------
  1238. @c Performance feedback
  1239. @c ---------------------------------------------------------------------
  1240. @node Performance feedback
  1241. @chapter Performance feedback
  1242. @menu
  1243. * On-line:: On-line performance feedback
  1244. * Off-line:: Off-line performance feedback
  1245. * Codelet performance:: Performance of codelets
  1246. @end menu
  1247. @node On-line
  1248. @section On-line performance feedback
  1249. @menu
  1250. * Enabling monitoring:: Enabling on-line performance monitoring
  1251. * Task feedback:: Per-task feedback
  1252. * Codelet feedback:: Per-codelet feedback
  1253. * Worker feedback:: Per-worker feedback
  1254. * Bus feedback:: Bus-related feedback
  1255. @end menu
  1256. @node Enabling monitoring
  1257. @subsection Enabling on-line performance monitoring
  1258. In order to enable online performance monitoring, the application can call
  1259. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1260. detect whether monitoring is already enabled or not by calling
  1261. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1262. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1263. can also be set to 1 to achieve the same effect.
  1264. Likewise, performance monitoring is stopped by calling
  1265. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1266. does not reset the performance counters so that the application may consult
  1267. them later on.
  1268. More details about the performance monitoring API are available in section
  1269. @ref{Profiling API}.
  1270. @node Task feedback
  1271. @subsection Per-task feedback
  1272. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1273. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1274. structure when a task terminates.
  1275. This structure is automatically destroyed when the task structure is destroyed,
  1276. either automatically or by calling @code{starpu_task_destroy}.
  1277. The @code{starpu_task_profiling_info} structure indicates the date when the
  1278. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1279. terminated (@code{end_time}), relative to the initialization of
  1280. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1281. that has executed the task (@code{workerid}).
  1282. These date are stored as @code{timespec} structures which the user may convert
  1283. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1284. function.
  1285. It it worth noting that the application may directly access this structure from
  1286. the callback executed at the end of the task. The @code{starpu_task} structure
  1287. associated to the callback currently being executed is indeed accessible with
  1288. the @code{starpu_get_current_task()} function.
  1289. @node Codelet feedback
  1290. @subsection Per-codelet feedback
  1291. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1292. an array of counters. The i-th entry of the array is incremented every time a
  1293. task implementing the codelet is executed on the i-th worker.
  1294. This array is not reinitialized when profiling is enabled or disabled.
  1295. @node Worker feedback
  1296. @subsection Per-worker feedback
  1297. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1298. function is a @code{starpu_worker_profiling_info} structure that gives
  1299. statistics about the specified worker. This structure specifies when StarPU
  1300. started collecting profiling information for that worker (@code{start_time}),
  1301. the duration of the profiling measurement interval (@code{total_time}), the
  1302. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1303. because there is no task to execute at all (@code{sleeping_time}), and the
  1304. number of tasks that were executed while profiling was enabled.
  1305. These values give an estimation of the proportion of time spent do real work,
  1306. and the time spent either sleeping because there are not enough executable
  1307. tasks or simply wasted in pure StarPU overhead.
  1308. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1309. information associated to a worker.
  1310. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1311. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1312. generate a graphic showing the evolution of these values during the time, for
  1313. the different workers.
  1314. @node Bus feedback
  1315. @subsection Bus-related feedback
  1316. TODO
  1317. @c how to enable/disable performance monitoring
  1318. @c what kind of information do we get ?
  1319. @node Off-line
  1320. @section Off-line performance feedback
  1321. @menu
  1322. * Generating traces:: Generating traces with FxT
  1323. * Gantt diagram:: Creating a Gantt Diagram
  1324. * DAG:: Creating a DAG with graphviz
  1325. * starpu-top:: Monitoring activity
  1326. @end menu
  1327. @node Generating traces
  1328. @subsection Generating traces with FxT
  1329. StarPU can use the FxT library (see
  1330. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1331. with a limited runtime overhead.
  1332. You can either get the FxT library from CVS (autotools are required):
  1333. @example
  1334. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1335. % ./bootstrap
  1336. @end example
  1337. If autotools are not available on your machine, or if you prefer to do so,
  1338. FxT's code is also available as a tarball:
  1339. @example
  1340. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1341. @end example
  1342. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1343. done following the standard procedure:
  1344. @example
  1345. % ./configure --prefix=$FXTDIR
  1346. % make
  1347. % make install
  1348. @end example
  1349. In order to have StarPU to generate traces, StarPU should be configured with
  1350. the @code{--with-fxt} option:
  1351. @example
  1352. $ ./configure --with-fxt=$FXTDIR
  1353. @end example
  1354. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1355. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1356. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1357. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1358. @code{/tmp/} directory by default, or by the directory specified by
  1359. the @code{STARPU_FXT_PREFIX} environment variable.
  1360. @node Gantt diagram
  1361. @subsection Creating a Gantt Diagram
  1362. When the FxT trace file @code{filename} has been generated, it is possible to
  1363. generate a trace in the Paje format by calling:
  1364. @example
  1365. % starpu_fxt_tool -i filename
  1366. @end example
  1367. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1368. to 1 before application execution will make StarPU do it automatically at
  1369. application shutdown.
  1370. This will create a @code{paje.trace} file in the current directory that can be
  1371. inspected with the ViTE trace visualizing open-source tool. More information
  1372. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1373. possible to open the @code{paje.trace} file with ViTE by using the following
  1374. command:
  1375. @example
  1376. % vite paje.trace
  1377. @end example
  1378. @node DAG
  1379. @subsection Creating a DAG with graphviz
  1380. When the FxT trace file @code{filename} has been generated, it is possible to
  1381. generate a task graph in the DOT format by calling:
  1382. @example
  1383. $ starpu_fxt_tool -i filename
  1384. @end example
  1385. This will create a @code{dag.dot} file in the current directory. This file is a
  1386. task graph described using the DOT language. It is possible to get a
  1387. graphical output of the graph by using the graphviz library:
  1388. @example
  1389. $ dot -Tpdf dag.dot -o output.pdf
  1390. @end example
  1391. @node starpu-top
  1392. @subsection Monitoring activity
  1393. When the FxT trace file @code{filename} has been generated, it is possible to
  1394. generate a activity trace by calling:
  1395. @example
  1396. $ starpu_fxt_tool -i filename
  1397. @end example
  1398. This will create an @code{activity.data} file in the current
  1399. directory. A profile of the application showing the activity of StarPU
  1400. during the execution of the program can be generated:
  1401. @example
  1402. $ starpu_top.sh activity.data
  1403. @end example
  1404. This will create a file named @code{activity.eps} in the current directory.
  1405. This picture is composed of two parts.
  1406. The first part shows the activity of the different workers. The green sections
  1407. indicate which proportion of the time was spent executed kernels on the
  1408. processing unit. The red sections indicate the proportion of time spent in
  1409. StartPU: an important overhead may indicate that the granularity may be too
  1410. low, and that bigger tasks may be appropriate to use the processing unit more
  1411. efficiently. The black sections indicate that the processing unit was blocked
  1412. because there was no task to process: this may indicate a lack of parallelism
  1413. which may be alleviated by creating more tasks when it is possible.
  1414. The second part of the @code{activity.eps} picture is a graph showing the
  1415. evolution of the number of tasks available in the system during the execution.
  1416. Ready tasks are shown in black, and tasks that are submitted but not
  1417. schedulable yet are shown in grey.
  1418. @node Codelet performance
  1419. @section Performance of codelets
  1420. The performance model of codelets can be examined by using the
  1421. @code{starpu_perfmodel_display} tool:
  1422. @example
  1423. $ starpu_perfmodel_display -l
  1424. file: <malloc_pinned.hannibal>
  1425. file: <starpu_slu_lu_model_21.hannibal>
  1426. file: <starpu_slu_lu_model_11.hannibal>
  1427. file: <starpu_slu_lu_model_22.hannibal>
  1428. file: <starpu_slu_lu_model_12.hannibal>
  1429. @end example
  1430. Here, the codelets of the lu example are available. We can examine the
  1431. performance of the 22 kernel:
  1432. @example
  1433. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1434. performance model for cpu
  1435. # hash size mean dev n
  1436. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1437. performance model for cuda_0
  1438. # hash size mean dev n
  1439. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1440. performance model for cuda_1
  1441. # hash size mean dev n
  1442. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1443. performance model for cuda_2
  1444. # hash size mean dev n
  1445. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1446. @end example
  1447. We can see that for the given size, over a sample of a few hundreds of
  1448. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1449. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1450. CPUs.
  1451. @c ---------------------------------------------------------------------
  1452. @c MPI support
  1453. @c ---------------------------------------------------------------------
  1454. @node StarPU MPI support
  1455. @chapter StarPU MPI support
  1456. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1457. @c ---------------------------------------------------------------------
  1458. @c Configuration options
  1459. @c ---------------------------------------------------------------------
  1460. @node Configuring StarPU
  1461. @chapter Configuring StarPU
  1462. @menu
  1463. * Compilation configuration::
  1464. * Execution configuration through environment variables::
  1465. @end menu
  1466. @node Compilation configuration
  1467. @section Compilation configuration
  1468. The following arguments can be given to the @code{configure} script.
  1469. @menu
  1470. * Common configuration::
  1471. * Configuring workers::
  1472. * Advanced configuration::
  1473. @end menu
  1474. @node Common configuration
  1475. @subsection Common configuration
  1476. @menu
  1477. * --enable-debug::
  1478. * --enable-fast::
  1479. * --enable-verbose::
  1480. * --enable-coverage::
  1481. @end menu
  1482. @node --enable-debug
  1483. @subsubsection @code{--enable-debug}
  1484. @table @asis
  1485. @item @emph{Description}:
  1486. Enable debugging messages.
  1487. @end table
  1488. @node --enable-fast
  1489. @subsubsection @code{--enable-fast}
  1490. @table @asis
  1491. @item @emph{Description}:
  1492. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1493. @end table
  1494. @node --enable-verbose
  1495. @subsubsection @code{--enable-verbose}
  1496. @table @asis
  1497. @item @emph{Description}:
  1498. Augment the verbosity of the debugging messages. This can be disabled
  1499. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1500. any value.
  1501. @smallexample
  1502. % STARPU_SILENT=1 ./vector_scal
  1503. @end smallexample
  1504. @end table
  1505. @node --enable-coverage
  1506. @subsubsection @code{--enable-coverage}
  1507. @table @asis
  1508. @item @emph{Description}:
  1509. Enable flags for the @code{gcov} coverage tool.
  1510. @end table
  1511. @node Configuring workers
  1512. @subsection Configuring workers
  1513. @menu
  1514. * --enable-nmaxcpus::
  1515. * --disable-cpu::
  1516. * --enable-maxcudadev::
  1517. * --disable-cuda::
  1518. * --with-cuda-dir::
  1519. * --with-cuda-include-dir::
  1520. * --with-cuda-lib-dir::
  1521. * --enable-maxopencldev::
  1522. * --disable-opencl::
  1523. * --with-opencl-dir::
  1524. * --with-opencl-include-dir::
  1525. * --with-opencl-lib-dir::
  1526. * --enable-gordon::
  1527. * --with-gordon-dir::
  1528. @end menu
  1529. @node --enable-nmaxcpus
  1530. @subsubsection @code{--enable-nmaxcpus=<number>}
  1531. @table @asis
  1532. @item @emph{Description}:
  1533. Defines the maximum number of CPU cores that StarPU will support, then
  1534. available as the @code{STARPU_NMAXCPUS} macro.
  1535. @end table
  1536. @node --disable-cpu
  1537. @subsubsection @code{--disable-cpu}
  1538. @table @asis
  1539. @item @emph{Description}:
  1540. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1541. @end table
  1542. @node --enable-maxcudadev
  1543. @subsubsection @code{--enable-maxcudadev=<number>}
  1544. @table @asis
  1545. @item @emph{Description}:
  1546. Defines the maximum number of CUDA devices that StarPU will support, then
  1547. available as the @code{STARPU_MAXCUDADEVS} macro.
  1548. @end table
  1549. @node --disable-cuda
  1550. @subsubsection @code{--disable-cuda}
  1551. @table @asis
  1552. @item @emph{Description}:
  1553. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1554. @end table
  1555. @node --with-cuda-dir
  1556. @subsubsection @code{--with-cuda-dir=<path>}
  1557. @table @asis
  1558. @item @emph{Description}:
  1559. Specify the directory where CUDA is installed. This directory should notably contain
  1560. @code{include/cuda.h}.
  1561. @end table
  1562. @node --with-cuda-include-dir
  1563. @subsubsection @code{--with-cuda-include-dir=<path>}
  1564. @table @asis
  1565. @item @emph{Description}:
  1566. Specify the directory where CUDA headers are installed. This directory should
  1567. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1568. value given to @code{--with-cuda-dir}.
  1569. @end table
  1570. @node --with-cuda-lib-dir
  1571. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1572. @table @asis
  1573. @item @emph{Description}:
  1574. Specify the directory where the CUDA library is installed. This directory should
  1575. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1576. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1577. @end table
  1578. @node --enable-maxopencldev
  1579. @subsubsection @code{--enable-maxopencldev=<number>}
  1580. @table @asis
  1581. @item @emph{Description}:
  1582. Defines the maximum number of OpenCL devices that StarPU will support, then
  1583. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1584. @end table
  1585. @node --disable-opencl
  1586. @subsubsection @code{--disable-opencl}
  1587. @table @asis
  1588. @item @emph{Description}:
  1589. Disable the use of OpenCL, even if the SDK is detected.
  1590. @end table
  1591. @node --with-opencl-dir
  1592. @subsubsection @code{--with-opencl-dir=<path>}
  1593. @table @asis
  1594. @item @emph{Description}:
  1595. Specify the location of the OpenCL SDK. This directory should notably contain
  1596. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1597. @end table
  1598. @node --with-opencl-include-dir
  1599. @subsubsection @code{--with-opencl-include-dir=<path>}
  1600. @table @asis
  1601. @item @emph{Description}:
  1602. Specify the location of OpenCL headers. This directory should notably contain
  1603. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1604. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1605. @end table
  1606. @node --with-opencl-lib-dir
  1607. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1608. @table @asis
  1609. @item @emph{Description}:
  1610. Specify the location of the OpenCL library. This directory should notably
  1611. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1612. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1613. @end table
  1614. @node --enable-gordon
  1615. @subsubsection @code{--enable-gordon}
  1616. @table @asis
  1617. @item @emph{Description}:
  1618. Enable the use of the Gordon runtime for Cell SPUs.
  1619. @c TODO: rather default to enabled when detected
  1620. @end table
  1621. @node --with-gordon-dir
  1622. @subsubsection @code{--with-gordon-dir=<path>}
  1623. @table @asis
  1624. @item @emph{Description}:
  1625. Specify the location of the Gordon SDK.
  1626. @end table
  1627. @node Advanced configuration
  1628. @subsection Advanced configuration
  1629. @menu
  1630. * --enable-perf-debug::
  1631. * --enable-model-debug::
  1632. * --enable-stats::
  1633. * --enable-maxbuffers::
  1634. * --enable-allocation-cache::
  1635. * --enable-opengl-render::
  1636. * --enable-blas-lib::
  1637. * --with-magma::
  1638. * --with-fxt::
  1639. * --with-perf-model-dir::
  1640. * --with-mpicc::
  1641. * --with-goto-dir::
  1642. * --with-atlas-dir::
  1643. * --with-mkl-cflags::
  1644. * --with-mkl-ldflags::
  1645. @end menu
  1646. @node --enable-perf-debug
  1647. @subsubsection @code{--enable-perf-debug}
  1648. @table @asis
  1649. @item @emph{Description}:
  1650. Enable performance debugging.
  1651. @end table
  1652. @node --enable-model-debug
  1653. @subsubsection @code{--enable-model-debug}
  1654. @table @asis
  1655. @item @emph{Description}:
  1656. Enable performance model debugging.
  1657. @end table
  1658. @node --enable-stats
  1659. @subsubsection @code{--enable-stats}
  1660. @table @asis
  1661. @item @emph{Description}:
  1662. Enable statistics.
  1663. @end table
  1664. @node --enable-maxbuffers
  1665. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1666. @table @asis
  1667. @item @emph{Description}:
  1668. Define the maximum number of buffers that tasks will be able to take
  1669. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1670. @end table
  1671. @node --enable-allocation-cache
  1672. @subsubsection @code{--enable-allocation-cache}
  1673. @table @asis
  1674. @item @emph{Description}:
  1675. Enable the use of a data allocation cache to avoid the cost of it with
  1676. CUDA. Still experimental.
  1677. @end table
  1678. @node --enable-opengl-render
  1679. @subsubsection @code{--enable-opengl-render}
  1680. @table @asis
  1681. @item @emph{Description}:
  1682. Enable the use of OpenGL for the rendering of some examples.
  1683. @c TODO: rather default to enabled when detected
  1684. @end table
  1685. @node --enable-blas-lib
  1686. @subsubsection @code{--enable-blas-lib=<name>}
  1687. @table @asis
  1688. @item @emph{Description}:
  1689. Specify the blas library to be used by some of the examples. The
  1690. library has to be 'atlas' or 'goto'.
  1691. @end table
  1692. @node --with-magma
  1693. @subsubsection @code{--with-magma=<path>}
  1694. @table @asis
  1695. @item @emph{Description}:
  1696. Specify where magma is installed. This directory should notably contain
  1697. @code{include/magmablas.h}.
  1698. @end table
  1699. @node --with-fxt
  1700. @subsubsection @code{--with-fxt=<path>}
  1701. @table @asis
  1702. @item @emph{Description}:
  1703. Specify the location of FxT (for generating traces and rendering them
  1704. using ViTE). This directory should notably contain
  1705. @code{include/fxt/fxt.h}.
  1706. @c TODO add ref to other section
  1707. @end table
  1708. @node --with-perf-model-dir
  1709. @subsubsection @code{--with-perf-model-dir=<dir>}
  1710. @table @asis
  1711. @item @emph{Description}:
  1712. Specify where performance models should be stored (instead of defaulting to the
  1713. current user's home).
  1714. @end table
  1715. @node --with-mpicc
  1716. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1717. @table @asis
  1718. @item @emph{Description}:
  1719. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1720. @end table
  1721. @node --with-goto-dir
  1722. @subsubsection @code{--with-goto-dir=<dir>}
  1723. @table @asis
  1724. @item @emph{Description}:
  1725. Specify the location of GotoBLAS.
  1726. @end table
  1727. @node --with-atlas-dir
  1728. @subsubsection @code{--with-atlas-dir=<dir>}
  1729. @table @asis
  1730. @item @emph{Description}:
  1731. Specify the location of ATLAS. This directory should notably contain
  1732. @code{include/cblas.h}.
  1733. @end table
  1734. @node --with-mkl-cflags
  1735. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1736. @table @asis
  1737. @item @emph{Description}:
  1738. Specify the compilation flags for the MKL Library.
  1739. @end table
  1740. @node --with-mkl-ldflags
  1741. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1742. @table @asis
  1743. @item @emph{Description}:
  1744. Specify the linking flags for the MKL Library. Note that the
  1745. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1746. website provides a script to determine the linking flags.
  1747. @end table
  1748. @c ---------------------------------------------------------------------
  1749. @c Environment variables
  1750. @c ---------------------------------------------------------------------
  1751. @node Execution configuration through environment variables
  1752. @section Execution configuration through environment variables
  1753. @menu
  1754. * Workers:: Configuring workers
  1755. * Scheduling:: Configuring the Scheduling engine
  1756. * Misc:: Miscellaneous and debug
  1757. @end menu
  1758. Note: the values given in @code{starpu_conf} structure passed when
  1759. calling @code{starpu_init} will override the values of the environment
  1760. variables.
  1761. @node Workers
  1762. @subsection Configuring workers
  1763. @menu
  1764. * STARPU_NCPUS:: Number of CPU workers
  1765. * STARPU_NCUDA:: Number of CUDA workers
  1766. * STARPU_NOPENCL:: Number of OpenCL workers
  1767. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1768. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1769. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1770. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1771. @end menu
  1772. @node STARPU_NCPUS
  1773. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1774. @table @asis
  1775. @item @emph{Description}:
  1776. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1777. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1778. the accelerators.
  1779. @end table
  1780. @node STARPU_NCUDA
  1781. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1782. @table @asis
  1783. @item @emph{Description}:
  1784. Specify the number of CUDA devices that StarPU can use. If
  1785. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1786. possible to select which CUDA devices should be used by the means of the
  1787. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1788. create as many CUDA workers as there are CUDA devices.
  1789. @end table
  1790. @node STARPU_NOPENCL
  1791. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1792. @table @asis
  1793. @item @emph{Description}:
  1794. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1795. @end table
  1796. @node STARPU_NGORDON
  1797. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1798. @table @asis
  1799. @item @emph{Description}:
  1800. Specify the number of SPUs that StarPU can use.
  1801. @end table
  1802. @node STARPU_WORKERS_CPUID
  1803. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1804. @table @asis
  1805. @item @emph{Description}:
  1806. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1807. specifies on which logical CPU the different workers should be
  1808. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1809. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1810. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1811. determined by the OS, or provided by the @code{hwloc} library in case it is
  1812. available.
  1813. Note that the first workers correspond to the CUDA workers, then come the
  1814. OpenCL and the SPU, and finally the CPU workers. For example if
  1815. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1816. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1817. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1818. the logical CPUs #1 and #3 will be used by the CPU workers.
  1819. If the number of workers is larger than the array given in
  1820. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1821. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1822. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1823. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1824. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1825. @end table
  1826. @node STARPU_WORKERS_CUDAID
  1827. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1828. @table @asis
  1829. @item @emph{Description}:
  1830. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1831. possible to select which CUDA devices should be used by StarPU. On a machine
  1832. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1833. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1834. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1835. the one reported by CUDA).
  1836. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1837. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1838. @end table
  1839. @node STARPU_WORKERS_OPENCLID
  1840. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1841. @table @asis
  1842. @item @emph{Description}:
  1843. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1844. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1845. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1846. @end table
  1847. @node Scheduling
  1848. @subsection Configuring the Scheduling engine
  1849. @menu
  1850. * STARPU_SCHED:: Scheduling policy
  1851. * STARPU_CALIBRATE:: Calibrate performance models
  1852. * STARPU_PREFETCH:: Use data prefetch
  1853. * STARPU_SCHED_ALPHA:: Computation factor
  1854. * STARPU_SCHED_BETA:: Communication factor
  1855. @end menu
  1856. @node STARPU_SCHED
  1857. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1858. @table @asis
  1859. @item @emph{Description}:
  1860. This chooses between the different scheduling policies proposed by StarPU: work
  1861. random, stealing, greedy, with performance models, etc.
  1862. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1863. @end table
  1864. @node STARPU_CALIBRATE
  1865. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1866. @table @asis
  1867. @item @emph{Description}:
  1868. If this variable is set to 1, the performance models are calibrated during
  1869. the execution. If it is set to 2, the previous values are dropped to restart
  1870. calibration from scratch. Setting this variable to 0 disable calibration, this
  1871. is the default behaviour.
  1872. Note: this currently only applies to dm and dmda scheduling policies.
  1873. @end table
  1874. @node STARPU_PREFETCH
  1875. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1876. @table @asis
  1877. @item @emph{Description}:
  1878. This variable indicates whether data prefetching should be enabled (0 means
  1879. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1880. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1881. advance, so that data is already present on the GPU when the task starts. As a
  1882. result, computation and data transfers are overlapped.
  1883. @end table
  1884. @node STARPU_SCHED_ALPHA
  1885. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1886. @table @asis
  1887. @item @emph{Description}:
  1888. To estimate the cost of a task StarPU takes into account the estimated
  1889. computation time (obtained thanks to performance models). The alpha factor is
  1890. the coefficient to be applied to it before adding it to the communication part.
  1891. @end table
  1892. @node STARPU_SCHED_BETA
  1893. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1894. @table @asis
  1895. @item @emph{Description}:
  1896. To estimate the cost of a task StarPU takes into account the estimated
  1897. data transfer time (obtained thanks to performance models). The beta factor is
  1898. the coefficient to be applied to it before adding it to the computation part.
  1899. @end table
  1900. @node Misc
  1901. @subsection Miscellaneous and debug
  1902. @menu
  1903. * STARPU_SILENT:: Disable verbose mode
  1904. * STARPU_LOGFILENAME:: Select debug file name
  1905. * STARPU_FXT_PREFIX:: FxT trace location
  1906. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1907. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1908. @end menu
  1909. @node STARPU_SILENT
  1910. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1911. @table @asis
  1912. @item @emph{Description}:
  1913. This variable allows to disable verbose mode at runtime when StarPU
  1914. has been configured with the option @code{--enable-verbose}.
  1915. @end table
  1916. @node STARPU_LOGFILENAME
  1917. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1918. @table @asis
  1919. @item @emph{Description}:
  1920. This variable specifies in which file the debugging output should be saved to.
  1921. @end table
  1922. @node STARPU_FXT_PREFIX
  1923. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1924. @table @asis
  1925. @item @emph{Description}
  1926. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1927. @end table
  1928. @node STARPU_LIMIT_GPU_MEM
  1929. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1930. @table @asis
  1931. @item @emph{Description}
  1932. This variable specifies the maximum number of megabytes that should be
  1933. available to the application on each GPUs. In case this value is smaller than
  1934. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1935. on the device. This variable is intended to be used for experimental purposes
  1936. as it emulates devices that have a limited amount of memory.
  1937. @end table
  1938. @node STARPU_GENERATE_TRACE
  1939. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1940. @table @asis
  1941. @item @emph{Description}
  1942. When set to 1, this variable indicates that StarPU should automatically
  1943. generate a Paje trace when starpu_shutdown is called.
  1944. @end table
  1945. @c ---------------------------------------------------------------------
  1946. @c StarPU API
  1947. @c ---------------------------------------------------------------------
  1948. @node StarPU API
  1949. @chapter StarPU API
  1950. @menu
  1951. * Initialization and Termination:: Initialization and Termination methods
  1952. * Workers' Properties:: Methods to enumerate workers' properties
  1953. * Data Library:: Methods to manipulate data
  1954. * Data Interfaces::
  1955. * Data Partition::
  1956. * Codelets and Tasks:: Methods to construct tasks
  1957. * Explicit Dependencies:: Explicit Dependencies
  1958. * Implicit Data Dependencies:: Implicit Data Dependencies
  1959. * Performance Model API::
  1960. * Profiling API:: Profiling API
  1961. * CUDA extensions:: CUDA extensions
  1962. * OpenCL extensions:: OpenCL extensions
  1963. * Cell extensions:: Cell extensions
  1964. * Miscellaneous helpers::
  1965. @end menu
  1966. @node Initialization and Termination
  1967. @section Initialization and Termination
  1968. @menu
  1969. * starpu_init:: Initialize StarPU
  1970. * struct starpu_conf:: StarPU runtime configuration
  1971. * starpu_conf_init:: Initialize starpu_conf structure
  1972. * starpu_shutdown:: Terminate StarPU
  1973. @end menu
  1974. @node starpu_init
  1975. @subsection @code{starpu_init} -- Initialize StarPU
  1976. @table @asis
  1977. @item @emph{Description}:
  1978. This is StarPU initialization method, which must be called prior to any other
  1979. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1980. policy, number of cores, ...) by passing a non-null argument. Default
  1981. configuration is used if the passed argument is @code{NULL}.
  1982. @item @emph{Return value}:
  1983. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1984. indicates that no worker was available (so that StarPU was not initialized).
  1985. @item @emph{Prototype}:
  1986. @code{int starpu_init(struct starpu_conf *conf);}
  1987. @end table
  1988. @node struct starpu_conf
  1989. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1990. @table @asis
  1991. @item @emph{Description}:
  1992. This structure is passed to the @code{starpu_init} function in order
  1993. to configure StarPU.
  1994. When the default value is used, StarPU automatically selects the number
  1995. of processing units and takes the default scheduling policy. This parameter
  1996. overwrites the equivalent environment variables.
  1997. @item @emph{Fields}:
  1998. @table @asis
  1999. @item @code{sched_policy_name} (default = NULL):
  2000. This is the name of the scheduling policy. This can also be specified with the
  2001. @code{STARPU_SCHED} environment variable.
  2002. @item @code{sched_policy} (default = NULL):
  2003. This is the definition of the scheduling policy. This field is ignored
  2004. if @code{sched_policy_name} is set.
  2005. @item @code{ncpus} (default = -1):
  2006. This is the number of CPU cores that StarPU can use. This can also be
  2007. specified with the @code{STARPU_NCPUS} environment variable.
  2008. @item @code{ncuda} (default = -1):
  2009. This is the number of CUDA devices that StarPU can use. This can also be
  2010. specified with the @code{STARPU_NCUDA} environment variable.
  2011. @item @code{nopencl} (default = -1):
  2012. This is the number of OpenCL devices that StarPU can use. This can also be
  2013. specified with the @code{STARPU_NOPENCL} environment variable.
  2014. @item @code{nspus} (default = -1):
  2015. This is the number of Cell SPUs that StarPU can use. This can also be
  2016. specified with the @code{STARPU_NGORDON} environment variable.
  2017. @item @code{use_explicit_workers_bindid} (default = 0)
  2018. If this flag is set, the @code{workers_bindid} array indicates where the
  2019. different workers are bound, otherwise StarPU automatically selects where to
  2020. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2021. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2022. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2023. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2024. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2025. where to bind the different workers. The i-th entry of the
  2026. @code{workers_bindid} indicates the logical identifier of the processor which
  2027. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2028. either determined by the OS, or provided by the @code{hwloc} library in case it
  2029. is available.
  2030. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2031. ignored.
  2032. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2033. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2034. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2035. CUDA devices in a round-robin fashion.
  2036. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2037. ignored.
  2038. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2039. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2040. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2041. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2042. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2043. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2044. OpenCL devices in a round-robin fashion.
  2045. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2046. @item @code{calibrate} (default = 0):
  2047. If this flag is set, StarPU will calibrate the performance models when
  2048. executing tasks. If this value is equal to -1, the default value is used. The
  2049. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2050. variable when it is set.
  2051. @end table
  2052. @end table
  2053. @node starpu_conf_init
  2054. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2055. @table @asis
  2056. This function initializes the @code{starpu_conf} structure passed as argument
  2057. with the default values. In case some configuration parameters are already
  2058. specified through environment variables, @code{starpu_conf_init} initializes
  2059. the fields of the structure according to the environment variables. For
  2060. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2061. @code{.ncuda} field of the structure passed as argument.
  2062. @item @emph{Return value}:
  2063. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2064. indicates that the argument was NULL.
  2065. @item @emph{Prototype}:
  2066. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2067. @end table
  2068. @node starpu_shutdown
  2069. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2070. @table @asis
  2071. @item @emph{Description}:
  2072. This is StarPU termination method. It must be called at the end of the
  2073. application: statistics and other post-mortem debugging information are not
  2074. guaranteed to be available until this method has been called.
  2075. @item @emph{Prototype}:
  2076. @code{void starpu_shutdown(void);}
  2077. @end table
  2078. @node Workers' Properties
  2079. @section Workers' Properties
  2080. @menu
  2081. * starpu_worker_get_count:: Get the number of processing units
  2082. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2083. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2084. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2085. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2086. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2087. * starpu_worker_get_id:: Get the identifier of the current worker
  2088. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2089. * starpu_worker_get_devid:: Get the device identifier of a worker
  2090. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2091. * starpu_worker_get_name:: Get the name of a worker
  2092. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2093. @end menu
  2094. @node starpu_worker_get_count
  2095. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2096. @table @asis
  2097. @item @emph{Description}:
  2098. This function returns the number of workers (i.e. processing units executing
  2099. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2100. @item @emph{Prototype}:
  2101. @code{unsigned starpu_worker_get_count(void);}
  2102. @end table
  2103. @node starpu_worker_get_count_by_type
  2104. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2105. @table @asis
  2106. @item @emph{Description}:
  2107. Returns the number of workers of the type indicated by the argument. A positive
  2108. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2109. the type is not valid otherwise.
  2110. @item @emph{Prototype}:
  2111. @code{int starpu_worker_get_count_by_type(enum starpu_archtype type);}
  2112. @end table
  2113. @node starpu_cpu_worker_get_count
  2114. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2115. @table @asis
  2116. @item @emph{Description}:
  2117. This function returns the number of CPUs controlled by StarPU. The returned
  2118. value should be at most @code{STARPU_NMAXCPUS}.
  2119. @item @emph{Prototype}:
  2120. @code{unsigned starpu_cpu_worker_get_count(void);}
  2121. @end table
  2122. @node starpu_cuda_worker_get_count
  2123. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2124. @table @asis
  2125. @item @emph{Description}:
  2126. This function returns the number of CUDA devices controlled by StarPU. The returned
  2127. value should be at most @code{STARPU_MAXCUDADEVS}.
  2128. @item @emph{Prototype}:
  2129. @code{unsigned starpu_cuda_worker_get_count(void);}
  2130. @end table
  2131. @node starpu_opencl_worker_get_count
  2132. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2133. @table @asis
  2134. @item @emph{Description}:
  2135. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2136. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2137. @item @emph{Prototype}:
  2138. @code{unsigned starpu_opencl_worker_get_count(void);}
  2139. @end table
  2140. @node starpu_spu_worker_get_count
  2141. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2142. @table @asis
  2143. @item @emph{Description}:
  2144. This function returns the number of Cell SPUs controlled by StarPU.
  2145. @item @emph{Prototype}:
  2146. @code{unsigned starpu_opencl_worker_get_count(void);}
  2147. @end table
  2148. @node starpu_worker_get_id
  2149. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. This function returns the identifier of the worker associated to the calling
  2153. thread. The returned value is either -1 if the current context is not a StarPU
  2154. worker (i.e. when called from the application outside a task or a callback), or
  2155. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2156. @item @emph{Prototype}:
  2157. @code{int starpu_worker_get_id(void);}
  2158. @end table
  2159. @node starpu_worker_get_ids_by_type
  2160. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2161. @table @asis
  2162. @item @emph{Description}:
  2163. Fill the workerids array with the identifiers of the workers that have the type
  2164. indicated in the first argument. The maxsize argument indicates the size of the
  2165. workids array. The returned value gives the number of identifiers that were put
  2166. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2167. workers with the appropriate type: in that case, the array is filled with the
  2168. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2169. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2170. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2171. @item @emph{Prototype}:
  2172. @code{int starpu_worker_get_ids_by_type(enum starpu_archtype type, int *workerids, int maxsize);}
  2173. @end table
  2174. @node starpu_worker_get_devid
  2175. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2176. @table @asis
  2177. @item @emph{Description}:
  2178. This functions returns the device id of the worker associated to an identifier
  2179. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2180. CUDA worker, this device identifier is the logical device identifier exposed by
  2181. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2182. identifier of a CPU worker is the logical identifier of the core on which the
  2183. worker was bound; this identifier is either provided by the OS or by the
  2184. @code{hwloc} library in case it is available.
  2185. @item @emph{Prototype}:
  2186. @code{int starpu_worker_get_devid(int id);}
  2187. @end table
  2188. @node starpu_worker_get_type
  2189. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2190. @table @asis
  2191. @item @emph{Description}:
  2192. This function returns the type of worker associated to an identifier (as
  2193. returned by the @code{starpu_worker_get_id} function). The returned value
  2194. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2195. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2196. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2197. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2198. identifier is unspecified.
  2199. @item @emph{Prototype}:
  2200. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2201. @end table
  2202. @node starpu_worker_get_name
  2203. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2204. @table @asis
  2205. @item @emph{Description}:
  2206. StarPU associates a unique human readable string to each processing unit. This
  2207. function copies at most the @code{maxlen} first bytes of the unique string
  2208. associated to a worker identified by its identifier @code{id} into the
  2209. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2210. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2211. function on an invalid identifier results in an unspecified behaviour.
  2212. @item @emph{Prototype}:
  2213. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2214. @end table
  2215. @node starpu_worker_get_memory_node
  2216. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2217. @table @asis
  2218. @item @emph{Description}:
  2219. This function returns the identifier of the memory node associated to the
  2220. worker identified by @code{workerid}.
  2221. @item @emph{Prototype}:
  2222. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2223. @end table
  2224. @node Data Library
  2225. @section Data Library
  2226. This section describes the data management facilities provided by StarPU.
  2227. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2228. design their own data interfaces if required.
  2229. @menu
  2230. * starpu_malloc:: Allocate data and pin it
  2231. * starpu_access_mode:: Data access mode
  2232. * unsigned memory_node:: Memory node
  2233. * starpu_data_handle:: StarPU opaque data handle
  2234. * void *interface:: StarPU data interface
  2235. * starpu_data_register:: Register a piece of data to StarPU
  2236. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2237. * starpu_data_invalidate:: Invalidate all data replicates
  2238. * starpu_data_acquire:: Access registered data from the application
  2239. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2240. * starpu_data_release:: Release registered data from the application
  2241. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2242. @end menu
  2243. @node starpu_malloc
  2244. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2245. @table @asis
  2246. @item @emph{Description}:
  2247. This function allocates data of the given size. It will also try to pin it in
  2248. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2249. thus permit data transfer and computation overlapping. The allocated buffer must
  2250. be freed thanks to the @code{starpu_free} function.
  2251. @item @emph{Prototype}:
  2252. @code{int starpu_malloc(void **A, size_t dim);}
  2253. @end table
  2254. @node starpu_access_mode
  2255. @subsection @code{starpu_access_mode} -- Data access mode
  2256. This datatype describes a data access mode. The different available modes are:
  2257. @table @asis
  2258. @table @asis
  2259. @item @code{STARPU_R} read-only mode.
  2260. @item @code{STARPU_W} write-only mode.
  2261. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2262. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2263. @end table
  2264. @end table
  2265. @node unsigned memory_node
  2266. @subsection @code{unsigned memory_node} -- Memory node
  2267. @table @asis
  2268. @item @emph{Description}:
  2269. Every worker is associated to a memory node which is a logical abstraction of
  2270. the address space from which the processing unit gets its data. For instance,
  2271. the memory node associated to the different CPU workers represents main memory
  2272. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2273. Every memory node is identified by a logical index which is accessible from the
  2274. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2275. to StarPU, the specified memory node indicates where the piece of data
  2276. initially resides (we also call this memory node the home node of a piece of
  2277. data).
  2278. @end table
  2279. @node starpu_data_handle
  2280. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2281. @table @asis
  2282. @item @emph{Description}:
  2283. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2284. data. Once a piece of data has been registered to StarPU, it is associated to a
  2285. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2286. over the entire machine, so that we can maintain data consistency and locate
  2287. data replicates for instance.
  2288. @end table
  2289. @node void *interface
  2290. @subsection @code{void *interface} -- StarPU data interface
  2291. @table @asis
  2292. @item @emph{Description}:
  2293. Data management is done at a high-level in StarPU: rather than accessing a mere
  2294. list of contiguous buffers, the tasks may manipulate data that are described by
  2295. a high-level construct which we call data interface.
  2296. An example of data interface is the "vector" interface which describes a
  2297. contiguous data array on a spefic memory node. This interface is a simple
  2298. structure containing the number of elements in the array, the size of the
  2299. elements, and the address of the array in the appropriate address space (this
  2300. address may be invalid if there is no valid copy of the array in the memory
  2301. node). More informations on the data interfaces provided by StarPU are
  2302. given in @ref{Data Interfaces}.
  2303. When a piece of data managed by StarPU is used by a task, the task
  2304. implementation is given a pointer to an interface describing a valid copy of
  2305. the data that is accessible from the current processing unit.
  2306. @end table
  2307. @node starpu_data_register
  2308. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2309. @table @asis
  2310. @item @emph{Description}:
  2311. Register a piece of data into the handle located at the @code{handleptr}
  2312. address. The @code{interface} buffer contains the initial description of the
  2313. data in the home node. The @code{ops} argument is a pointer to a structure
  2314. describing the different methods used to manipulate this type of interface. See
  2315. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2316. If @code{home_node} is -1, StarPU will automatically
  2317. allocate the memory when it is used for the
  2318. first time in write-only mode. Once such data handle has been automatically
  2319. allocated, it is possible to access it using any access mode.
  2320. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2321. matrix) which can be registered by the means of helper functions (e.g.
  2322. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2323. @item @emph{Prototype}:
  2324. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2325. uint32_t home_node,
  2326. void *interface,
  2327. struct starpu_data_interface_ops_t *ops);}
  2328. @end table
  2329. @node starpu_data_unregister
  2330. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2331. @table @asis
  2332. @item @emph{Description}:
  2333. This function unregisters a data handle from StarPU. If the data was
  2334. automatically allocated by StarPU because the home node was -1, all
  2335. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2336. is put back into the home node in the buffer that was initially registered.
  2337. Using a data handle that has been unregistered from StarPU results in an
  2338. undefined behaviour.
  2339. @item @emph{Prototype}:
  2340. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2341. @end table
  2342. @node starpu_data_invalidate
  2343. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2344. @table @asis
  2345. @item @emph{Description}:
  2346. Destroy all replicates of the data handle. After data invalidation, the first
  2347. access to the handle must be performed in write-only mode. Accessing an
  2348. invalidated data in read-mode results in undefined behaviour.
  2349. @item @emph{Prototype}:
  2350. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2351. @end table
  2352. @c TODO create a specific sections about user interaction with the DSM ?
  2353. @node starpu_data_acquire
  2354. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2355. @table @asis
  2356. @item @emph{Description}:
  2357. The application must call this function prior to accessing registered data from
  2358. main memory outside tasks. StarPU ensures that the application will get an
  2359. up-to-date copy of the data in main memory located where the data was
  2360. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2361. be consistent with the access mode specified in the @code{mode} argument.
  2362. @code{starpu_data_release} must be called once the application does not need to
  2363. access the piece of data anymore. Note that implicit data
  2364. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2365. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2366. the data, unless that they have not been disabled explictly by calling
  2367. @code{starpu_data_set_default_sequential_consistency_flag} or
  2368. @code{starpu_data_set_sequential_consistency_flag}.
  2369. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2370. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2371. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2372. @item @emph{Prototype}:
  2373. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2374. @end table
  2375. @node starpu_data_acquire_cb
  2376. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2377. @table @asis
  2378. @item @emph{Description}:
  2379. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2380. @code{starpu_data_release}. When the data specified in the first argument is
  2381. available in the appropriate access mode, the callback function is executed.
  2382. The application may access the requested data during the execution of this
  2383. callback. The callback function must call @code{starpu_data_release} once the
  2384. application does not need to access the piece of data anymore.
  2385. Note that implicit data dependencies are also enforced by
  2386. @code{starpu_data_acquire_cb} in case they are enabled.
  2387. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2388. be called from task callbacks. Upon successful completion, this function
  2389. returns 0.
  2390. @item @emph{Prototype}:
  2391. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2392. @end table
  2393. @node starpu_data_release
  2394. @subsection @code{starpu_data_release} -- Release registered data from the application
  2395. @table @asis
  2396. @item @emph{Description}:
  2397. This function releases the piece of data acquired by the application either by
  2398. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2399. @item @emph{Prototype}:
  2400. @code{void starpu_data_release(starpu_data_handle handle);}
  2401. @end table
  2402. @node starpu_data_set_wt_mask
  2403. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2404. @table @asis
  2405. @item @emph{Description}:
  2406. This function sets the write-through mask of a given data, i.e. a bitmask of
  2407. nodes where the data should be always replicated after modification.
  2408. @item @emph{Prototype}:
  2409. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2410. @end table
  2411. @node Data Interfaces
  2412. @section Data Interfaces
  2413. @menu
  2414. * Variable Interface::
  2415. * Vector Interface::
  2416. * Matrix Interface::
  2417. * 3D Matrix Interface::
  2418. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2419. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2420. @end menu
  2421. @node Variable Interface
  2422. @subsection Variable Interface
  2423. @table @asis
  2424. @item @emph{Description}:
  2425. This variant of @code{starpu_data_register} uses the variable interface,
  2426. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2427. and @code{elemsize} is the size of the variable.
  2428. @item @emph{Prototype}:
  2429. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2430. uint32_t home_node,
  2431. uintptr_t ptr, size_t elemsize);}
  2432. @item @emph{Example}:
  2433. @cartouche
  2434. @smallexample
  2435. float var;
  2436. starpu_data_handle var_handle;
  2437. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2438. @end smallexample
  2439. @end cartouche
  2440. @end table
  2441. @node Vector Interface
  2442. @subsection Vector Interface
  2443. @table @asis
  2444. @item @emph{Description}:
  2445. This variant of @code{starpu_data_register} uses the vector interface,
  2446. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2447. element in the home node. @code{nx} is the number of elements in the vector.
  2448. @code{elemsize} is the size of each element.
  2449. @item @emph{Prototype}:
  2450. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2451. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2452. @item @emph{Example}:
  2453. @cartouche
  2454. @smallexample
  2455. float vector[NX];
  2456. starpu_data_handle vector_handle;
  2457. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2458. sizeof(vector[0]));
  2459. @end smallexample
  2460. @end cartouche
  2461. @end table
  2462. @node Matrix Interface
  2463. @subsection Matrix Interface
  2464. @table @asis
  2465. @item @emph{Description}:
  2466. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2467. matrices of elements. @code{ptr} is the address of the first element in the home
  2468. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2469. of elements in a row (this can be different from @code{ld} if there are extra
  2470. elements for alignment for instance). @code{ny} is the number of rows.
  2471. @code{elemsize} is the size of each element.
  2472. @item @emph{Prototype}:
  2473. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2474. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2475. uint32_t ny, size_t elemsize);}
  2476. @item @emph{Example}:
  2477. @cartouche
  2478. @smallexample
  2479. float *matrix;
  2480. starpu_data_handle matrix_handle;
  2481. matrix = (float*)malloc(width * height * sizeof(float));
  2482. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2483. width, width, height, sizeof(float));
  2484. @end smallexample
  2485. @end cartouche
  2486. @end table
  2487. @node 3D Matrix Interface
  2488. @subsection 3D Matrix Interface
  2489. @table @asis
  2490. @item @emph{Description}:
  2491. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2492. @code{ptr} is the address of the array of first element in the home node.
  2493. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2494. of rows between z planes. @code{nx} is the number of elements in a row (this
  2495. can be different from @code{ldy} if there are extra elements for alignment
  2496. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2497. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2498. each element.
  2499. @item @emph{Prototype}:
  2500. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2501. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2502. uint32_t ny, uint32_t nz, size_t elemsize);}
  2503. @item @emph{Example}:
  2504. @cartouche
  2505. @smallexample
  2506. float *block;
  2507. starpu_data_handle block_handle;
  2508. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2509. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2510. nx, nx*ny, nx, ny, nz, sizeof(float));
  2511. @end smallexample
  2512. @end cartouche
  2513. @end table
  2514. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2515. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2516. @table @asis
  2517. @item @emph{Description}:
  2518. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2519. TODO
  2520. @item @emph{Prototype}:
  2521. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2522. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2523. @item @emph{Example}:
  2524. @cartouche
  2525. @smallexample
  2526. @end smallexample
  2527. @end cartouche
  2528. @end table
  2529. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2530. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2531. @table @asis
  2532. @item @emph{Description}:
  2533. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2534. TODO
  2535. @item @emph{Prototype}:
  2536. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2537. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2538. @item @emph{Example}:
  2539. @cartouche
  2540. @smallexample
  2541. @end smallexample
  2542. @end cartouche
  2543. @end table
  2544. @node Data Partition
  2545. @section Data Partition
  2546. @menu
  2547. * struct starpu_data_filter:: StarPU filter structure
  2548. * starpu_data_partition:: Partition Data
  2549. * starpu_data_unpartition:: Unpartition Data
  2550. * starpu_data_get_nb_children::
  2551. * starpu_data_get_sub_data::
  2552. * Predefined filter functions::
  2553. @end menu
  2554. @node struct starpu_data_filter
  2555. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2556. @table @asis
  2557. @item @emph{Description}:
  2558. The filter structure describes a data partitioning operation, to be given to the
  2559. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2560. @item @emph{Fields}:
  2561. @table @asis
  2562. @item @code{filter_func}:
  2563. This function fills the @code{child_interface} structure with interface
  2564. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2565. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2566. @item @code{nchildren}:
  2567. This is the number of parts to partition the data into.
  2568. @item @code{get_nchildren}:
  2569. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2570. children depends on the actual data (e.g. the number of blocks in a sparse
  2571. matrix).
  2572. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2573. @item @code{get_child_ops}:
  2574. In case the resulting children use a different data interface, this function
  2575. returns which interface is used by child number @code{id}.
  2576. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2577. @item @code{filter_arg}:
  2578. Some filters take an addition parameter, but this is usually unused.
  2579. @item @code{filter_arg_ptr}:
  2580. Some filters take an additional array parameter like the sizes of the parts, but
  2581. this is usually unused.
  2582. @end table
  2583. @end table
  2584. @node starpu_data_partition
  2585. @subsection starpu_data_partition -- Partition Data
  2586. @table @asis
  2587. @item @emph{Description}:
  2588. This requests partitioning one StarPU data @code{initial_handle} into several
  2589. subdata according to the filter @code{f}
  2590. @item @emph{Prototype}:
  2591. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2592. @item @emph{Example}:
  2593. @cartouche
  2594. @smallexample
  2595. struct starpu_data_filter f = @{
  2596. .filter_func = starpu_vertical_block_filter_func,
  2597. .nchildren = nslicesx,
  2598. .get_nchildren = NULL,
  2599. .get_child_ops = NULL
  2600. @};
  2601. starpu_data_partition(A_handle, &f);
  2602. @end smallexample
  2603. @end cartouche
  2604. @end table
  2605. @node starpu_data_unpartition
  2606. @subsection starpu_data_unpartition -- Unpartition data
  2607. @table @asis
  2608. @item @emph{Description}:
  2609. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2610. collected back into one big piece in the @code{gathering_node} (usually 0).
  2611. @item @emph{Prototype}:
  2612. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2613. @item @emph{Example}:
  2614. @cartouche
  2615. @smallexample
  2616. starpu_data_unpartition(A_handle, 0);
  2617. @end smallexample
  2618. @end cartouche
  2619. @end table
  2620. @node starpu_data_get_nb_children
  2621. @subsection starpu_data_get_nb_children
  2622. @table @asis
  2623. @item @emph{Description}:
  2624. This function returns the number of children.
  2625. @item @emph{Return value}:
  2626. The number of children.
  2627. @item @emph{Prototype}:
  2628. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2629. @end table
  2630. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2631. @node starpu_data_get_sub_data
  2632. @subsection starpu_data_get_sub_data
  2633. @table @asis
  2634. @item @emph{Description}:
  2635. After partitioning a StarPU data by applying a filter,
  2636. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2637. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2638. is the number of filters to traverse (in case several filters have been applied,
  2639. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2640. parameters are the indexes.
  2641. @item @emph{Return value}:
  2642. A handle to the subdata.
  2643. @item @emph{Prototype}:
  2644. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2645. @item @emph{Example}:
  2646. @cartouche
  2647. @smallexample
  2648. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2649. @end smallexample
  2650. @end cartouche
  2651. @end table
  2652. @node Predefined filter functions
  2653. @subsection Predefined filter functions
  2654. @menu
  2655. * Partitioning BCSR Data::
  2656. * Partitioning BLAS interface::
  2657. * Partitioning Vector Data::
  2658. * Partitioning Block Data::
  2659. @end menu
  2660. This section gives a partial list of the predefined partitioning functions.
  2661. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2662. list can be found in @code{starpu_data_filters.h} .
  2663. @node Partitioning BCSR Data
  2664. @subsubsection Partitioning BCSR Data
  2665. @table @asis
  2666. @item @emph{Description}:
  2667. TODO
  2668. @item @emph{Prototype}:
  2669. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2670. @end table
  2671. @table @asis
  2672. @item @emph{Description}:
  2673. TODO
  2674. @item @emph{Prototype}:
  2675. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2676. @end table
  2677. @node Partitioning BLAS interface
  2678. @subsubsection Partitioning BLAS interface
  2679. @table @asis
  2680. @item @emph{Description}:
  2681. This partitions a dense Matrix into horizontal blocks.
  2682. @item @emph{Prototype}:
  2683. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2684. @end table
  2685. @table @asis
  2686. @item @emph{Description}:
  2687. This partitions a dense Matrix into vertical blocks.
  2688. @item @emph{Prototype}:
  2689. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2690. @end table
  2691. @node Partitioning Vector Data
  2692. @subsubsection Partitioning Vector Data
  2693. @table @asis
  2694. @item @emph{Description}:
  2695. This partitions a vector into blocks of the same size.
  2696. @item @emph{Prototype}:
  2697. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2698. @end table
  2699. @table @asis
  2700. @item @emph{Description}:
  2701. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2702. @item @emph{Prototype}:
  2703. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2704. @end table
  2705. @table @asis
  2706. @item @emph{Description}:
  2707. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2708. @item @emph{Prototype}:
  2709. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2710. @end table
  2711. @node Partitioning Block Data
  2712. @subsubsection Partitioning Block Data
  2713. @table @asis
  2714. @item @emph{Description}:
  2715. This partitions a 3D matrix along the X axis.
  2716. @item @emph{Prototype}:
  2717. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2718. @end table
  2719. @node Codelets and Tasks
  2720. @section Codelets and Tasks
  2721. @menu
  2722. * struct starpu_codelet:: StarPU codelet structure
  2723. * struct starpu_task:: StarPU task structure
  2724. * starpu_task_init:: Initialize a Task
  2725. * starpu_task_create:: Allocate and Initialize a Task
  2726. * starpu_task_deinit:: Release all the resources used by a Task
  2727. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2728. * starpu_task_wait:: Wait for the termination of a Task
  2729. * starpu_task_submit:: Submit a Task
  2730. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2731. * starpu_get_current_task:: Return the task currently executed by the worker
  2732. * starpu_display_codelet_stats:: Display statistics
  2733. @end menu
  2734. @node struct starpu_codelet
  2735. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2736. @table @asis
  2737. @item @emph{Description}:
  2738. The codelet structure describes a kernel that is possibly implemented on various
  2739. targets. For compatibility, make sure to initialize the whole structure to zero.
  2740. @item @emph{Fields}:
  2741. @table @asis
  2742. @item @code{where}:
  2743. Indicates which types of processing units are able to execute the codelet.
  2744. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2745. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2746. indicates that it is only available on Cell SPUs.
  2747. @item @code{cpu_func} (optional):
  2748. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2749. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2750. argument being the array of data managed by the data management library, and
  2751. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2752. field of the @code{starpu_task} structure.
  2753. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2754. the @code{where} field, it must be non-null otherwise.
  2755. @item @code{cuda_func} (optional):
  2756. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2757. must be a host-function written in the CUDA runtime API}. Its prototype must
  2758. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2759. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2760. field, it must be non-null otherwise.
  2761. @item @code{opencl_func} (optional):
  2762. Is a function pointer to the OpenCL implementation of the codelet. Its
  2763. prototype must be:
  2764. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2765. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2766. @code{where} field, it must be non-null otherwise.
  2767. @item @code{gordon_func} (optional):
  2768. This is the index of the Cell SPU implementation within the Gordon library.
  2769. See Gordon documentation for more details on how to register a kernel and
  2770. retrieve its index.
  2771. @item @code{nbuffers}:
  2772. Specifies the number of arguments taken by the codelet. These arguments are
  2773. managed by the DSM and are accessed from the @code{void *buffers[]}
  2774. array. The constant argument passed with the @code{cl_arg} field of the
  2775. @code{starpu_task} structure is not counted in this number. This value should
  2776. not be above @code{STARPU_NMAXBUFS}.
  2777. @item @code{model} (optional):
  2778. This is a pointer to the task duration performance model associated to this
  2779. codelet. This optional field is ignored when set to @code{NULL}.
  2780. TODO
  2781. @item @code{power_model} (optional):
  2782. This is a pointer to the task power consumption performance model associated
  2783. to this codelet. This optional field is ignored when set to @code{NULL}.
  2784. In the case of parallel codelets, this has to account for all processing units
  2785. involved in the parallel execution.
  2786. TODO
  2787. @end table
  2788. @end table
  2789. @node struct starpu_task
  2790. @subsection @code{struct starpu_task} -- StarPU task structure
  2791. @table @asis
  2792. @item @emph{Description}:
  2793. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2794. processing units managed by StarPU. It instantiates a codelet. It can either be
  2795. allocated dynamically with the @code{starpu_task_create} method, or declared
  2796. statically. In the latter case, the programmer has to zero the
  2797. @code{starpu_task} structure and to fill the different fields properly. The
  2798. indicated default values correspond to the configuration of a task allocated
  2799. with @code{starpu_task_create}.
  2800. @item @emph{Fields}:
  2801. @table @asis
  2802. @item @code{cl}:
  2803. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2804. describes where the kernel should be executed, and supplies the appropriate
  2805. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2806. such empty tasks can be useful for synchronization purposes.
  2807. @item @code{buffers}:
  2808. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2809. different pieces of data accessed by the task, and how they should be accessed.
  2810. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2811. @code{handle} field specifies the handle of the piece of data, and the
  2812. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2813. of entries in this array must be specified in the @code{nbuffers} field of the
  2814. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2815. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2816. option when configuring StarPU.
  2817. @item @code{cl_arg} (optional) (default = NULL):
  2818. This pointer is passed to the codelet through the second argument
  2819. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2820. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2821. argument.
  2822. @item @code{cl_arg_size} (optional, Cell specific):
  2823. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2824. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2825. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2826. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2827. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2828. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2829. codelets, where the @code{cl_arg} pointer is given as such.
  2830. @item @code{callback_func} (optional) (default = @code{NULL}):
  2831. This is a function pointer of prototype @code{void (*f)(void *)} which
  2832. specifies a possible callback. If this pointer is non-null, the callback
  2833. function is executed @emph{on the host} after the execution of the task. The
  2834. callback is passed the value contained in the @code{callback_arg} field. No
  2835. callback is executed if the field is set to @code{NULL}.
  2836. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2837. This is the pointer passed to the callback function. This field is ignored if
  2838. the @code{callback_func} is set to @code{NULL}.
  2839. @item @code{use_tag} (optional) (default = 0):
  2840. If set, this flag indicates that the task should be associated with the tag
  2841. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2842. with the task and to express task dependencies easily.
  2843. @item @code{tag_id}:
  2844. This fields contains the tag associated to the task if the @code{use_tag} field
  2845. was set, it is ignored otherwise.
  2846. @item @code{synchronous}:
  2847. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2848. returns only when the task has been executed (or if no worker is able to
  2849. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2850. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2851. This field indicates a level of priority for the task. This is an integer value
  2852. that must be set between the return values of the
  2853. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2854. and that of the @code{starpu_sched_get_max_priority} for the most important
  2855. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2856. are provided for convenience and respectively returns value of
  2857. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2858. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2859. order to allow static task initialization. Scheduling strategies that take
  2860. priorities into account can use this parameter to take better scheduling
  2861. decisions, but the scheduling policy may also ignore it.
  2862. @item @code{execute_on_a_specific_worker} (default = 0):
  2863. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2864. task to the worker specified by the @code{workerid} field.
  2865. @item @code{workerid} (optional):
  2866. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2867. which is the identifier of the worker that should process this task (as
  2868. returned by @code{starpu_worker_get_id}). This field is ignored if
  2869. @code{execute_on_a_specific_worker} field is set to 0.
  2870. @item @code{detach} (optional) (default = 1):
  2871. If this flag is set, it is not possible to synchronize with the task
  2872. by the means of @code{starpu_task_wait} later on. Internal data structures
  2873. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2874. flag is not set.
  2875. @item @code{destroy} (optional) (default = 1):
  2876. If this flag is set, the task structure will automatically be freed, either
  2877. after the execution of the callback if the task is detached, or during
  2878. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2879. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2880. called explicitly. Setting this flag for a statically allocated task structure
  2881. will result in undefined behaviour.
  2882. @item @code{predicted} (output field):
  2883. Predicted duration of the task. This field is only set if the scheduling
  2884. strategy used performance models.
  2885. @end table
  2886. @end table
  2887. @node starpu_task_init
  2888. @subsection @code{starpu_task_init} -- Initialize a Task
  2889. @table @asis
  2890. @item @emph{Description}:
  2891. Initialize a task structure with default values. This function is implicitly
  2892. called by @code{starpu_task_create}. By default, tasks initialized with
  2893. @code{starpu_task_init} must be deinitialized explicitly with
  2894. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2895. constant @code{STARPU_TASK_INITIALIZER}.
  2896. @item @emph{Prototype}:
  2897. @code{void starpu_task_init(struct starpu_task *task);}
  2898. @end table
  2899. @node starpu_task_create
  2900. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2901. @table @asis
  2902. @item @emph{Description}:
  2903. Allocate a task structure and initialize it with default values. Tasks
  2904. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2905. task is terminated. If the destroy flag is explicitly unset, the resources used
  2906. by the task are freed by calling
  2907. @code{starpu_task_destroy}.
  2908. @item @emph{Prototype}:
  2909. @code{struct starpu_task *starpu_task_create(void);}
  2910. @end table
  2911. @node starpu_task_deinit
  2912. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2913. @table @asis
  2914. @item @emph{Description}:
  2915. Release all the structures automatically allocated to execute the task. This is
  2916. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2917. freed. This should be used for statically allocated tasks for instance.
  2918. @item @emph{Prototype}:
  2919. @code{void starpu_task_deinit(struct starpu_task *task);}
  2920. @end table
  2921. @node starpu_task_destroy
  2922. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2923. @table @asis
  2924. @item @emph{Description}:
  2925. Free the resource allocated during @code{starpu_task_create}. This function can be
  2926. called automatically after the execution of a task by setting the
  2927. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2928. Calling this function on a statically allocated task results in an undefined
  2929. behaviour.
  2930. @item @emph{Prototype}:
  2931. @code{void starpu_task_destroy(struct starpu_task *task);}
  2932. @end table
  2933. @node starpu_task_wait
  2934. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2935. @table @asis
  2936. @item @emph{Description}:
  2937. This function blocks until the task has been executed. It is not possible to
  2938. synchronize with a task more than once. It is not possible to wait for
  2939. synchronous or detached tasks.
  2940. @item @emph{Return value}:
  2941. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2942. indicates that the specified task was either synchronous or detached.
  2943. @item @emph{Prototype}:
  2944. @code{int starpu_task_wait(struct starpu_task *task);}
  2945. @end table
  2946. @node starpu_task_submit
  2947. @subsection @code{starpu_task_submit} -- Submit a Task
  2948. @table @asis
  2949. @item @emph{Description}:
  2950. This function submits a task to StarPU. Calling this function does
  2951. not mean that the task will be executed immediately as there can be data or task
  2952. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2953. scheduling this task with respect to such dependencies.
  2954. This function returns immediately if the @code{synchronous} field of the
  2955. @code{starpu_task} structure was set to 0, and block until the termination of
  2956. the task otherwise. It is also possible to synchronize the application with
  2957. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2958. function for instance.
  2959. @item @emph{Return value}:
  2960. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2961. means that there is no worker able to process this task (e.g. there is no GPU
  2962. available and this task is only implemented for CUDA devices).
  2963. @item @emph{Prototype}:
  2964. @code{int starpu_task_submit(struct starpu_task *task);}
  2965. @end table
  2966. @node starpu_task_wait_for_all
  2967. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2968. @table @asis
  2969. @item @emph{Description}:
  2970. This function blocks until all the tasks that were submitted are terminated.
  2971. @item @emph{Prototype}:
  2972. @code{void starpu_task_wait_for_all(void);}
  2973. @end table
  2974. @node starpu_get_current_task
  2975. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2976. @table @asis
  2977. @item @emph{Description}:
  2978. This function returns the task currently executed by the worker, or
  2979. NULL if it is called either from a thread that is not a task or simply
  2980. because there is no task being executed at the moment.
  2981. @item @emph{Prototype}:
  2982. @code{struct starpu_task *starpu_get_current_task(void);}
  2983. @end table
  2984. @node starpu_display_codelet_stats
  2985. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2986. @table @asis
  2987. @item @emph{Description}:
  2988. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2989. @item @emph{Prototype}:
  2990. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2991. @end table
  2992. @c Callbacks : what can we put in callbacks ?
  2993. @node Explicit Dependencies
  2994. @section Explicit Dependencies
  2995. @menu
  2996. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2997. * starpu_tag_t:: Task logical identifier
  2998. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2999. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3000. * starpu_tag_wait:: Block until a Tag is terminated
  3001. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3002. * starpu_tag_remove:: Destroy a Tag
  3003. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3004. @end menu
  3005. @node starpu_task_declare_deps_array
  3006. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3007. @table @asis
  3008. @item @emph{Description}:
  3009. Declare task dependencies between a @code{task} and an array of tasks of length
  3010. @code{ndeps}. This function must be called prior to the submission of the task,
  3011. but it may called after the submission or the execution of the tasks in the
  3012. array provided the tasks are still valid (ie. they were not automatically
  3013. destroyed). Calling this function on a task that was already submitted or with
  3014. an entry of @code{task_array} that is not a valid task anymore results in an
  3015. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  3016. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3017. same task, in this case, the dependencies are added. It is possible to have
  3018. redundancy in the task dependencies.
  3019. @item @emph{Prototype}:
  3020. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  3021. @end table
  3022. @node starpu_tag_t
  3023. @subsection @code{starpu_tag_t} -- Task logical identifier
  3024. @table @asis
  3025. @item @emph{Description}:
  3026. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3027. dependencies between tasks by the means of those tags. To do so, fill the
  3028. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3029. be arbitrary) and set the @code{use_tag} field to 1.
  3030. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3031. not be started until the tasks which holds the declared dependency tags are
  3032. completed.
  3033. @end table
  3034. @node starpu_tag_declare_deps
  3035. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3036. @table @asis
  3037. @item @emph{Description}:
  3038. Specify the dependencies of the task identified by tag @code{id}. The first
  3039. argument specifies the tag which is configured, the second argument gives the
  3040. number of tag(s) on which @code{id} depends. The following arguments are the
  3041. tags which have to be terminated to unlock the task.
  3042. This function must be called before the associated task is submitted to StarPU
  3043. with @code{starpu_task_submit}.
  3044. @item @emph{Remark}
  3045. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3046. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3047. typically need to be explicitly casted. Using the
  3048. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3049. @item @emph{Prototype}:
  3050. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3051. @item @emph{Example}:
  3052. @cartouche
  3053. @example
  3054. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3055. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3056. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3057. @end example
  3058. @end cartouche
  3059. @end table
  3060. @node starpu_tag_declare_deps_array
  3061. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3062. @table @asis
  3063. @item @emph{Description}:
  3064. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3065. does not take a variable number of arguments but an array of tags of size
  3066. @code{ndeps}.
  3067. @item @emph{Prototype}:
  3068. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3069. @item @emph{Example}:
  3070. @cartouche
  3071. @example
  3072. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3073. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3074. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3075. @end example
  3076. @end cartouche
  3077. @end table
  3078. @node starpu_tag_wait
  3079. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3080. @table @asis
  3081. @item @emph{Description}:
  3082. This function blocks until the task associated to tag @code{id} has been
  3083. executed. This is a blocking call which must therefore not be called within
  3084. tasks or callbacks, but only from the application directly. It is possible to
  3085. synchronize with the same tag multiple times, as long as the
  3086. @code{starpu_tag_remove} function is not called. Note that it is still
  3087. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3088. data structure was freed (e.g. if the @code{destroy} flag of the
  3089. @code{starpu_task} was enabled).
  3090. @item @emph{Prototype}:
  3091. @code{void starpu_tag_wait(starpu_tag_t id);}
  3092. @end table
  3093. @node starpu_tag_wait_array
  3094. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3095. @table @asis
  3096. @item @emph{Description}:
  3097. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3098. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3099. terminated.
  3100. @item @emph{Prototype}:
  3101. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3102. @end table
  3103. @node starpu_tag_remove
  3104. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3105. @table @asis
  3106. @item @emph{Description}:
  3107. This function releases the resources associated to tag @code{id}. It can be
  3108. called once the corresponding task has been executed and when there is
  3109. no other tag that depend on this tag anymore.
  3110. @item @emph{Prototype}:
  3111. @code{void starpu_tag_remove(starpu_tag_t id);}
  3112. @end table
  3113. @node starpu_tag_notify_from_apps
  3114. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3115. @table @asis
  3116. @item @emph{Description}:
  3117. This function explicitly unlocks tag @code{id}. It may be useful in the
  3118. case of applications which execute part of their computation outside StarPU
  3119. tasks (e.g. third-party libraries). It is also provided as a
  3120. convenient tool for the programmer, for instance to entirely construct the task
  3121. DAG before actually giving StarPU the opportunity to execute the tasks.
  3122. @item @emph{Prototype}:
  3123. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3124. @end table
  3125. @node Implicit Data Dependencies
  3126. @section Implicit Data Dependencies
  3127. @menu
  3128. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3129. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3130. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3131. @end menu
  3132. In this section, we describe how StarPU makes it possible to insert implicit
  3133. task dependencies in order to enforce sequential data consistency. When this
  3134. data consistency is enabled on a specific data handle, any data access will
  3135. appear as sequentially consistent from the application. For instance, if the
  3136. application submits two tasks that access the same piece of data in read-only
  3137. mode, and then a third task that access it in write mode, dependencies will be
  3138. added between the two first tasks and the third one. Implicit data dependencies
  3139. are also inserted in the case of data accesses from the application.
  3140. @node starpu_data_set_default_sequential_consistency_flag
  3141. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3142. @table @asis
  3143. @item @emph{Description}:
  3144. Set the default sequential consistency flag. If a non-zero value is passed, a
  3145. sequential data consistency will be enforced for all handles registered after
  3146. this function call, otherwise it is disabled. By default, StarPU enables
  3147. sequential data consistency. It is also possible to select the data consistency
  3148. mode of a specific data handle with the
  3149. @code{starpu_data_set_sequential_consistency_flag} function.
  3150. @item @emph{Prototype}:
  3151. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3152. @end table
  3153. @node starpu_data_get_default_sequential_consistency_flag
  3154. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3155. @table @asis
  3156. @item @emph{Description}:
  3157. This function returns the current default sequential consistency flag.
  3158. @item @emph{Prototype}:
  3159. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3160. @end table
  3161. @node starpu_data_set_sequential_consistency_flag
  3162. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3163. @table @asis
  3164. @item @emph{Description}:
  3165. Select the data consistency mode associated to a data handle. The consistency
  3166. mode set using this function has the priority over the default mode which can
  3167. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3168. @item @emph{Prototype}:
  3169. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3170. @end table
  3171. @node Performance Model API
  3172. @section Performance Model API
  3173. @menu
  3174. * starpu_load_history_debug::
  3175. * starpu_perfmodel_debugfilepath::
  3176. * starpu_perfmodel_get_arch_name::
  3177. * starpu_force_bus_sampling::
  3178. @end menu
  3179. @node starpu_load_history_debug
  3180. @subsection @code{starpu_load_history_debug}
  3181. @table @asis
  3182. @item @emph{Description}:
  3183. TODO
  3184. @item @emph{Prototype}:
  3185. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3186. @end table
  3187. @node starpu_perfmodel_debugfilepath
  3188. @subsection @code{starpu_perfmodel_debugfilepath}
  3189. @table @asis
  3190. @item @emph{Description}:
  3191. TODO
  3192. @item @emph{Prototype}:
  3193. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3194. @end table
  3195. @node starpu_perfmodel_get_arch_name
  3196. @subsection @code{starpu_perfmodel_get_arch_name}
  3197. @table @asis
  3198. @item @emph{Description}:
  3199. TODO
  3200. @item @emph{Prototype}:
  3201. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3202. @end table
  3203. @node starpu_force_bus_sampling
  3204. @subsection @code{starpu_force_bus_sampling}
  3205. @table @asis
  3206. @item @emph{Description}:
  3207. This forces sampling the bus performance model again.
  3208. @item @emph{Prototype}:
  3209. @code{void starpu_force_bus_sampling(void);}
  3210. @end table
  3211. @node Profiling API
  3212. @section Profiling API
  3213. @menu
  3214. * starpu_profiling_status_set:: starpu_profiling_status_set
  3215. * starpu_profiling_status_get:: starpu_profiling_status_get
  3216. * struct starpu_task_profiling_info:: task profiling information
  3217. * struct starpu_worker_profiling_info:: worker profiling information
  3218. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3219. * struct starpu_bus_profiling_info:: bus profiling information
  3220. * starpu_bus_get_count::
  3221. * starpu_bus_get_id::
  3222. * starpu_bus_get_src::
  3223. * starpu_bus_get_dst::
  3224. * starpu_timing_timespec_delay_us::
  3225. * starpu_timing_timespec_to_us::
  3226. * starpu_bus_profiling_helper_display_summary::
  3227. * starpu_worker_profiling_helper_display_summary::
  3228. @end menu
  3229. @node starpu_profiling_status_set
  3230. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3231. @table @asis
  3232. @item @emph{Description}:
  3233. Thie function sets the profiling status. Profiling is activated by passing
  3234. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3235. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3236. resets all profiling measurements. When profiling is enabled, the
  3237. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3238. to a valid @code{struct starpu_task_profiling_info} structure containing
  3239. information about the execution of the task.
  3240. @item @emph{Return value}:
  3241. Negative return values indicate an error, otherwise the previous status is
  3242. returned.
  3243. @item @emph{Prototype}:
  3244. @code{int starpu_profiling_status_set(int status);}
  3245. @end table
  3246. @node starpu_profiling_status_get
  3247. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3248. @table @asis
  3249. @item @emph{Description}:
  3250. Return the current profiling status or a negative value in case there was an error.
  3251. @item @emph{Prototype}:
  3252. @code{int starpu_profiling_status_get(void);}
  3253. @end table
  3254. @node struct starpu_task_profiling_info
  3255. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3256. @table @asis
  3257. @item @emph{Description}:
  3258. This structure contains information about the execution of a task. It is
  3259. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3260. structure if profiling was enabled.
  3261. @item @emph{Fields}:
  3262. @table @asis
  3263. @item @code{submit_time}:
  3264. Date of task submission (relative to the initialization of StarPU).
  3265. @item @code{start_time}:
  3266. Date of task execution beginning (relative to the initialization of StarPU).
  3267. @item @code{end_time}:
  3268. Date of task execution termination (relative to the initialization of StarPU).
  3269. @item @code{workerid}:
  3270. Identifier of the worker which has executed the task.
  3271. @end table
  3272. @end table
  3273. @node struct starpu_worker_profiling_info
  3274. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3275. @table @asis
  3276. @item @emph{Description}:
  3277. This structure contains the profiling information associated to a worker.
  3278. @item @emph{Fields}:
  3279. @table @asis
  3280. @item @code{start_time}:
  3281. Starting date for the reported profiling measurements.
  3282. @item @code{total_time}:
  3283. Duration of the profiling measurement interval.
  3284. @item @code{executing_time}:
  3285. Time spent by the worker to execute tasks during the profiling measurement interval.
  3286. @item @code{sleeping_time}:
  3287. Time spent idling by the worker during the profiling measurement interval.
  3288. @item @code{executed_tasks}:
  3289. Number of tasks executed by the worker during the profiling measurement interval.
  3290. @end table
  3291. @end table
  3292. @node starpu_worker_get_profiling_info
  3293. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3294. @table @asis
  3295. @item @emph{Description}:
  3296. Get the profiling info associated to the worker identified by @code{workerid},
  3297. and reset the profiling measurements. If the @code{worker_info} argument is
  3298. NULL, only reset the counters associated to worker @code{workerid}.
  3299. @item @emph{Return value}:
  3300. Upon successful completion, this function returns 0. Otherwise, a negative
  3301. value is returned.
  3302. @item @emph{Prototype}:
  3303. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3304. @end table
  3305. @node struct starpu_bus_profiling_info
  3306. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3307. @table @asis
  3308. @item @emph{Description}:
  3309. TODO
  3310. @item @emph{Fields}:
  3311. @table @asis
  3312. @item @code{start_time}:
  3313. TODO
  3314. @item @code{total_time}:
  3315. TODO
  3316. @item @code{transferred_bytes}:
  3317. TODO
  3318. @item @code{transfer_count}:
  3319. TODO
  3320. @end table
  3321. @end table
  3322. @node starpu_bus_get_count
  3323. @subsection @code{starpu_bus_get_count}
  3324. @table @asis
  3325. @item @emph{Description}:
  3326. TODO
  3327. @item @emph{Prototype}:
  3328. @code{int starpu_bus_get_count(void);}
  3329. @end table
  3330. @node starpu_bus_get_id
  3331. @subsection @code{starpu_bus_get_id}
  3332. @table @asis
  3333. @item @emph{Description}:
  3334. TODO
  3335. @item @emph{Prototype}:
  3336. @code{int starpu_bus_get_id(int src, int dst);}
  3337. @end table
  3338. @node starpu_bus_get_src
  3339. @subsection @code{starpu_bus_get_src}
  3340. @table @asis
  3341. @item @emph{Description}:
  3342. TODO
  3343. @item @emph{Prototype}:
  3344. @code{int starpu_bus_get_src(int busid);}
  3345. @end table
  3346. @node starpu_bus_get_dst
  3347. @subsection @code{starpu_bus_get_dst}
  3348. @table @asis
  3349. @item @emph{Description}:
  3350. TODO
  3351. @item @emph{Prototype}:
  3352. @code{int starpu_bus_get_dst(int busid);}
  3353. @end table
  3354. @node starpu_timing_timespec_delay_us
  3355. @subsection @code{starpu_timing_timespec_delay_us}
  3356. @table @asis
  3357. @item @emph{Description}:
  3358. TODO
  3359. @item @emph{Prototype}:
  3360. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3361. @end table
  3362. @node starpu_timing_timespec_to_us
  3363. @subsection @code{starpu_timing_timespec_to_us}
  3364. @table @asis
  3365. @item @emph{Description}:
  3366. TODO
  3367. @item @emph{Prototype}:
  3368. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3369. @end table
  3370. @node starpu_bus_profiling_helper_display_summary
  3371. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3372. @table @asis
  3373. @item @emph{Description}:
  3374. TODO
  3375. @item @emph{Prototype}:
  3376. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3377. @end table
  3378. @node starpu_worker_profiling_helper_display_summary
  3379. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3380. @table @asis
  3381. @item @emph{Description}:
  3382. TODO
  3383. @item @emph{Prototype}:
  3384. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3385. @end table
  3386. @node CUDA extensions
  3387. @section CUDA extensions
  3388. @c void starpu_malloc(float **A, size_t dim);
  3389. @menu
  3390. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3391. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3392. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3393. @end menu
  3394. @node starpu_cuda_get_local_stream
  3395. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3396. @table @asis
  3397. @item @emph{Description}:
  3398. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3399. function is only provided for convenience so that programmers can easily use
  3400. asynchronous operations within codelets without having to create a stream by
  3401. hand. Note that the application is not forced to use the stream provided by
  3402. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3403. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3404. the likelihood of having all transfers overlapped.
  3405. @item @emph{Prototype}:
  3406. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3407. @end table
  3408. @node starpu_helper_cublas_init
  3409. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3410. @table @asis
  3411. @item @emph{Description}:
  3412. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3413. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3414. controlled by StarPU. This call blocks until CUBLAS has been properly
  3415. initialized on every device.
  3416. @item @emph{Prototype}:
  3417. @code{void starpu_helper_cublas_init(void);}
  3418. @end table
  3419. @node starpu_helper_cublas_shutdown
  3420. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3421. @table @asis
  3422. @item @emph{Description}:
  3423. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3424. @item @emph{Prototype}:
  3425. @code{void starpu_helper_cublas_shutdown(void);}
  3426. @end table
  3427. @node OpenCL extensions
  3428. @section OpenCL extensions
  3429. @menu
  3430. * Enabling OpenCL:: Enabling OpenCL
  3431. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3432. * Loading OpenCL kernels:: Loading OpenCL kernels
  3433. * OpenCL statistics:: Collecting statistics from OpenCL
  3434. @end menu
  3435. @node Enabling OpenCL
  3436. @subsection Enabling OpenCL
  3437. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3438. enabled by default. To enable OpenCL, you need either to disable CUDA
  3439. when configuring StarPU:
  3440. @example
  3441. % ./configure --disable-cuda
  3442. @end example
  3443. or when running applications:
  3444. @example
  3445. % STARPU_NCUDA=0 ./application
  3446. @end example
  3447. OpenCL will automatically be started on any device not yet used by
  3448. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3449. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3450. so:
  3451. @example
  3452. % STARPU_NCUDA=2 ./application
  3453. @end example
  3454. @node Compiling OpenCL kernels
  3455. @subsection Compiling OpenCL kernels
  3456. Source codes for OpenCL kernels can be stored in a file or in a
  3457. string. StarPU provides functions to build the program executable for
  3458. each available OpenCL device as a @code{cl_program} object. This
  3459. program executable can then be loaded within a specific queue as
  3460. explained in the next section. These are only helpers, Applications
  3461. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3462. use (e.g. different programs on the different OpenCL devices, for
  3463. relocation purpose for instance).
  3464. @menu
  3465. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3466. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3467. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3468. @end menu
  3469. @node starpu_opencl_load_opencl_from_file
  3470. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3471. @table @asis
  3472. @item @emph{Description}:
  3473. TODO
  3474. @item @emph{Prototype}:
  3475. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3476. @end table
  3477. @node starpu_opencl_load_opencl_from_string
  3478. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3479. @table @asis
  3480. @item @emph{Description}:
  3481. TODO
  3482. @item @emph{Prototype}:
  3483. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs, const char* build_options);}
  3484. @end table
  3485. @node starpu_opencl_unload_opencl
  3486. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3487. @table @asis
  3488. @item @emph{Description}:
  3489. TODO
  3490. @item @emph{Prototype}:
  3491. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3492. @end table
  3493. @node Loading OpenCL kernels
  3494. @subsection Loading OpenCL kernels
  3495. @menu
  3496. * starpu_opencl_load_kernel:: Loading a kernel
  3497. * starpu_opencl_relase_kernel:: Releasing a kernel
  3498. @end menu
  3499. @node starpu_opencl_load_kernel
  3500. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3501. @table @asis
  3502. @item @emph{Description}:
  3503. TODO
  3504. @item @emph{Prototype}:
  3505. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3506. }
  3507. @end table
  3508. @node starpu_opencl_relase_kernel
  3509. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3510. @table @asis
  3511. @item @emph{Description}:
  3512. TODO
  3513. @item @emph{Prototype}:
  3514. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3515. @end table
  3516. @node OpenCL statistics
  3517. @subsection OpenCL statistics
  3518. @menu
  3519. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3520. @end menu
  3521. @node starpu_opencl_collect_stats
  3522. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3523. @table @asis
  3524. @item @emph{Description}:
  3525. After termination of the kernels, the OpenCL codelet should call this function
  3526. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3527. collect statistics about the kernel execution (used cycles, consumed power).
  3528. @item @emph{Prototype}:
  3529. @code{int starpu_opencl_collect_stats(cl_event event);}
  3530. @end table
  3531. @node Cell extensions
  3532. @section Cell extensions
  3533. nothing yet.
  3534. @node Miscellaneous helpers
  3535. @section Miscellaneous helpers
  3536. @menu
  3537. * starpu_data_cpy:: Copy a data handle into another data handle
  3538. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3539. @end menu
  3540. @node starpu_data_cpy
  3541. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3542. @table @asis
  3543. @item @emph{Description}:
  3544. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3545. The @code{asynchronous} parameter indicates whether the function should
  3546. block or not. In the case of an asynchronous call, it is possible to
  3547. synchronize with the termination of this operation either by the means of
  3548. implicit dependencies (if enabled) or by calling
  3549. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3550. this callback function is executed after the handle has been copied, and it is
  3551. given the @code{callback_arg} pointer as argument.
  3552. @item @emph{Prototype}:
  3553. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3554. @end table
  3555. @node starpu_execute_on_each_worker
  3556. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3557. @table @asis
  3558. @item @emph{Description}:
  3559. When calling this method, the offloaded function specified by the first argument is
  3560. executed by every StarPU worker that may execute the function.
  3561. The second argument is passed to the offloaded function.
  3562. The last argument specifies on which types of processing units the function
  3563. should be executed. Similarly to the @code{where} field of the
  3564. @code{starpu_codelet} structure, it is possible to specify that the function
  3565. should be executed on every CUDA device and every CPU by passing
  3566. @code{STARPU_CPU|STARPU_CUDA}.
  3567. This function blocks until the function has been executed on every appropriate
  3568. processing units, so that it may not be called from a callback function for
  3569. instance.
  3570. @item @emph{Prototype}:
  3571. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3572. @end table
  3573. @c ---------------------------------------------------------------------
  3574. @c Advanced Topics
  3575. @c ---------------------------------------------------------------------
  3576. @node Advanced Topics
  3577. @chapter Advanced Topics
  3578. @menu
  3579. * Defining a new data interface::
  3580. * Defining a new scheduling policy::
  3581. @end menu
  3582. @node Defining a new data interface
  3583. @section Defining a new data interface
  3584. @menu
  3585. * struct starpu_data_interface_ops_t:: Per-interface methods
  3586. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3587. * An example of data interface:: An example of data interface
  3588. @end menu
  3589. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3590. @node struct starpu_data_interface_ops_t
  3591. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3592. @table @asis
  3593. @item @emph{Description}:
  3594. TODO describe all the different fields
  3595. @end table
  3596. @node struct starpu_data_copy_methods
  3597. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3598. @table @asis
  3599. @item @emph{Description}:
  3600. TODO describe all the different fields
  3601. @end table
  3602. @node An example of data interface
  3603. @subsection An example of data interface
  3604. @table @asis
  3605. TODO
  3606. @end table
  3607. @node Defining a new scheduling policy
  3608. @section Defining a new scheduling policy
  3609. TODO
  3610. A full example showing how to define a new scheduling policy is available in
  3611. the StarPU sources in the directory @code{examples/scheduler/}.
  3612. @menu
  3613. * struct starpu_sched_policy_s::
  3614. * starpu_worker_set_sched_condition::
  3615. * starpu_sched_set_min_priority:: Set the minimum priority level
  3616. * starpu_sched_set_max_priority:: Set the maximum priority level
  3617. * starpu_push_local_task:: Assign a task to a worker
  3618. * Source code::
  3619. @end menu
  3620. @node struct starpu_sched_policy_s
  3621. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3622. @table @asis
  3623. @item @emph{Description}:
  3624. This structure contains all the methods that implement a scheduling policy. An
  3625. application may specify which scheduling strategy in the @code{sched_policy}
  3626. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3627. function.
  3628. @item @emph{Fields}:
  3629. @table @asis
  3630. @item @code{init_sched}:
  3631. Initialize the scheduling policy.
  3632. @item @code{deinit_sched}:
  3633. Cleanup the scheduling policy.
  3634. @item @code{push_task}:
  3635. Insert a task into the scheduler.
  3636. @item @code{push_prio_task}:
  3637. Insert a priority task into the scheduler.
  3638. @item @code{push_prio_notify}:
  3639. Notify the scheduler that a task was pushed on the worker. This method is
  3640. called when a task that was explicitely assigned to a worker is scheduled. This
  3641. method therefore permits to keep the state of of the scheduler coherent even
  3642. when StarPU bypasses the scheduling strategy.
  3643. @item @code{pop_task}:
  3644. Get a task from the scheduler. The mutex associated to the worker is already
  3645. taken when this method is called. If this method is defined as @code{NULL}, the
  3646. worker will only execute tasks from its local queue. In this case, the
  3647. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3648. assign tasks to the different workers.
  3649. @item @code{pop_every_task}:
  3650. Remove all available tasks from the scheduler (tasks are chained by the means
  3651. of the prev and next fields of the starpu_task structure). The mutex associated
  3652. to the worker is already taken when this method is called.
  3653. @item @code{post_exec_hook} (optionnal):
  3654. This method is called every time a task has been executed.
  3655. @item @code{policy_name}:
  3656. Name of the policy (optionnal).
  3657. @item @code{policy_description}:
  3658. Description of the policy (optionnal).
  3659. @end table
  3660. @end table
  3661. @node starpu_worker_set_sched_condition
  3662. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3663. @table @asis
  3664. @item @emph{Description}:
  3665. When there is no available task for a worker, StarPU blocks this worker on a
  3666. condition variable. This function specifies which condition variable (and the
  3667. associated mutex) should be used to block (and to wake up) a worker. Note that
  3668. multiple workers may use the same condition variable. For instance, in the case
  3669. of a scheduling strategy with a single task queue, the same condition variable
  3670. would be used to block and wake up all workers.
  3671. The initialization method of a scheduling strategy (@code{init_sched}) must
  3672. call this function once per worker.
  3673. @item @emph{Prototype}:
  3674. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3675. @end table
  3676. @node starpu_sched_set_min_priority
  3677. @subsection @code{starpu_sched_set_min_priority}
  3678. @table @asis
  3679. @item @emph{Description}:
  3680. Defines the minimum priority level supported by the scheduling policy. The
  3681. default minimum priority level is the same as the default priority level which
  3682. is 0 by convention. The application may access that value by calling the
  3683. @code{starpu_sched_get_min_priority} function. This function should only be
  3684. called from the initialization method of the scheduling policy, and should not
  3685. be used directly from the application.
  3686. @item @emph{Prototype}:
  3687. @code{void starpu_sched_set_min_priority(int min_prio);}
  3688. @end table
  3689. @node starpu_sched_set_max_priority
  3690. @subsection @code{starpu_sched_set_max_priority}
  3691. @table @asis
  3692. @item @emph{Description}:
  3693. Defines the maximum priority level supported by the scheduling policy. The
  3694. default maximum priority level is 1. The application may access that value by
  3695. calling the @code{starpu_sched_get_max_priority} function. This function should
  3696. only be called from the initialization method of the scheduling policy, and
  3697. should not be used directly from the application.
  3698. @item @emph{Prototype}:
  3699. @code{void starpu_sched_set_min_priority(int max_prio);}
  3700. @end table
  3701. @node starpu_push_local_task
  3702. @subsection @code{starpu_push_local_task}
  3703. @table @asis
  3704. @item @emph{Description}:
  3705. The scheduling policy may put tasks directly into a worker's local queue so
  3706. that it is not always necessary to create its own queue when the local queue
  3707. is sufficient. If "back" not null, the task is put at the back of the queue
  3708. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3709. a FIFO ordering.
  3710. @item @emph{Prototype}:
  3711. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3712. @end table
  3713. @node Source code
  3714. @subsection Source code
  3715. @cartouche
  3716. @smallexample
  3717. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3718. .init_sched = init_dummy_sched,
  3719. .deinit_sched = deinit_dummy_sched,
  3720. .push_task = push_task_dummy,
  3721. .push_prio_task = NULL,
  3722. .pop_task = pop_task_dummy,
  3723. .post_exec_hook = NULL,
  3724. .pop_every_task = NULL,
  3725. .policy_name = "dummy",
  3726. .policy_description = "dummy scheduling strategy"
  3727. @};
  3728. @end smallexample
  3729. @end cartouche
  3730. @c ---------------------------------------------------------------------
  3731. @c Appendices
  3732. @c ---------------------------------------------------------------------
  3733. @c ---------------------------------------------------------------------
  3734. @c Full source code for the 'Scaling a Vector' example
  3735. @c ---------------------------------------------------------------------
  3736. @node Full source code for the 'Scaling a Vector' example
  3737. @appendix Full source code for the 'Scaling a Vector' example
  3738. @menu
  3739. * Main application::
  3740. * CPU Kernel::
  3741. * CUDA Kernel::
  3742. * OpenCL Kernel::
  3743. @end menu
  3744. @node Main application
  3745. @section Main application
  3746. @smallexample
  3747. @include vector_scal_c.texi
  3748. @end smallexample
  3749. @node CPU Kernel
  3750. @section CPU Kernel
  3751. @smallexample
  3752. @include vector_scal_cpu.texi
  3753. @end smallexample
  3754. @node CUDA Kernel
  3755. @section CUDA Kernel
  3756. @smallexample
  3757. @include vector_scal_cuda.texi
  3758. @end smallexample
  3759. @node OpenCL Kernel
  3760. @section OpenCL Kernel
  3761. @menu
  3762. * Invoking the kernel::
  3763. * Source of the kernel::
  3764. @end menu
  3765. @node Invoking the kernel
  3766. @subsection Invoking the kernel
  3767. @smallexample
  3768. @include vector_scal_opencl.texi
  3769. @end smallexample
  3770. @node Source of the kernel
  3771. @subsection Source of the kernel
  3772. @smallexample
  3773. @include vector_scal_opencl_codelet.texi
  3774. @end smallexample
  3775. @c
  3776. @c Indices.
  3777. @c
  3778. @node Function Index
  3779. @unnumbered Function Index
  3780. @printindex fn
  3781. @bye