| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 | /* dptsvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dptsvx_(char *fact, integer *n, integer *nrhs, 	doublereal *d__, doublereal *e, doublereal *df, doublereal *ef, 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *	info){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1;    /* Local variables */    extern logical lsame_(char *, char *);    doublereal anorm;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal dlamch_(char *);    logical nofact;    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    xerbla_(char *, integer *);    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int dptcon_(integer *, doublereal *, doublereal *, 	     doublereal *, doublereal *, doublereal *, integer *), dptrfs_(	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), dpttrf_(	    integer *, doublereal *, doublereal *, integer *), dpttrs_(	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    integer *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTSVX uses the factorization A = L*D*L**T to compute the solution *//*  to a real system of linear equations A*X = B, where A is an N-by-N *//*  symmetric positive definite tridiagonal matrix and X and B are *//*  N-by-NRHS matrices. *//*  Error bounds on the solution and a condition estimate are also *//*  provided. *//*  Description *//*  =========== *//*  The following steps are performed: *//*  1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L *//*     is a unit lower bidiagonal matrix and D is diagonal.  The *//*     factorization can also be regarded as having the form *//*     A = U**T*D*U. *//*  2. If the leading i-by-i principal minor is not positive definite, *//*     then the routine returns with INFO = i. Otherwise, the factored *//*     form of A is used to estimate the condition number of the matrix *//*     A.  If the reciprocal of the condition number is less than machine *//*     precision, INFO = N+1 is returned as a warning, but the routine *//*     still goes on to solve for X and compute error bounds as *//*     described below. *//*  3. The system of equations is solved for X using the factored form *//*     of A. *//*  4. Iterative refinement is applied to improve the computed solution *//*     matrix and calculate error bounds and backward error estimates *//*     for it. *//*  Arguments *//*  ========= *//*  FACT    (input) CHARACTER*1 *//*          Specifies whether or not the factored form of A has been *//*          supplied on entry. *//*          = 'F':  On entry, DF and EF contain the factored form of A. *//*                  D, E, DF, and EF will not be modified. *//*          = 'N':  The matrix A will be copied to DF and EF and *//*                  factored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices B and X.  NRHS >= 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the tridiagonal matrix A. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of the tridiagonal matrix A. *//*  DF      (input or output) DOUBLE PRECISION array, dimension (N) *//*          If FACT = 'F', then DF is an input argument and on entry *//*          contains the n diagonal elements of the diagonal matrix D *//*          from the L*D*L**T factorization of A. *//*          If FACT = 'N', then DF is an output argument and on exit *//*          contains the n diagonal elements of the diagonal matrix D *//*          from the L*D*L**T factorization of A. *//*  EF      (input or output) DOUBLE PRECISION array, dimension (N-1) *//*          If FACT = 'F', then EF is an input argument and on entry *//*          contains the (n-1) subdiagonal elements of the unit *//*          bidiagonal factor L from the L*D*L**T factorization of A. *//*          If FACT = 'N', then EF is an output argument and on exit *//*          contains the (n-1) subdiagonal elements of the unit *//*          bidiagonal factor L from the L*D*L**T factorization of A. *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          The N-by-NRHS right hand side matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal condition number of the matrix A.  If RCOND *//*          is less than the machine precision (in particular, if *//*          RCOND = 0), the matrix is singular to working precision. *//*          This condition is indicated by a return code of INFO > 0. *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j). *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in any *//*          element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is *//*                <= N:  the leading minor of order i of A is *//*                       not positive definite, so the factorization *//*                       could not be completed, and the solution has not *//*                       been computed. RCOND = 0 is returned. *//*                = N+1: U is nonsingular, but RCOND is less than machine *//*                       precision, meaning that the matrix is singular *//*                       to working precision.  Nevertheless, the *//*                       solution and error bounds are computed because *//*                       there are a number of situations where the *//*                       computed solution can be more accurate than the *//*                       value of RCOND would suggest. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    --df;    --ef;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    /* Function Body */    *info = 0;    nofact = lsame_(fact, "N");    if (! nofact && ! lsame_(fact, "F")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*ldb < max(1,*n)) {	*info = -9;    } else if (*ldx < max(1,*n)) {	*info = -11;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPTSVX", &i__1);	return 0;    }    if (nofact) {/*        Compute the L*D*L' (or U'*D*U) factorization of A. */	dcopy_(n, &d__[1], &c__1, &df[1], &c__1);	if (*n > 1) {	    i__1 = *n - 1;	    dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);	}	dpttrf_(n, &df[1], &ef[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {	    *rcond = 0.;	    return 0;	}    }/*     Compute the norm of the matrix A. */    anorm = dlanst_("1", n, &d__[1], &e[1]);/*     Compute the reciprocal of the condition number of A. */    dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info);/*     Compute the solution vectors X. */    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);/*     Use iterative refinement to improve the computed solutions and *//*     compute error bounds and backward error estimates for them. */    dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[	    x_offset], ldx, &ferr[1], &berr[1], &work[1], info);/*     Set INFO = N+1 if the matrix is singular to working precision. */    if (*rcond < dlamch_("Epsilon")) {	*info = *n + 1;    }    return 0;/*     End of DPTSVX */} /* dptsvx_ */
 |