| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 | /* dlaqr3.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static logical c_true = TRUE_;static doublereal c_b17 = 0.;static doublereal c_b18 = 1.;static integer c__12 = 12;/* Subroutine */ int dlaqr3_(logical *wantt, logical *wantz, integer *n, 	integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer *	ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, 	integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal *	v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer *	nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork){    /* System generated locals */    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;    doublereal d__1, d__2, d__3, d__4, d__5, d__6;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k;    doublereal s, aa, bb, cc, dd, cs, sn;    integer jw;    doublereal evi, evk, foo;    integer kln;    doublereal tau, ulp;    integer lwk1, lwk2, lwk3;    doublereal beta;    integer kend, kcol, info, nmin, ifst, ilst, ltop, krow;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    logical bulge;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer infqr, kwtop;    extern /* Subroutine */ int dlanv2_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *), dlaqr4_(	    logical *, logical *, integer *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), 	    dlabad_(doublereal *, doublereal *);    extern doublereal dlamch_(char *);    extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *), dlarfg_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *), dlahqr_(logical *, logical *, integer *, 	     integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *), dlacpy_(char *, integer *, integer *, doublereal *, 	    integer *, doublereal *, integer *);    doublereal safmin;    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    doublereal safmax;    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    dtrexc_(char *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *, integer *, doublereal *, integer *),	     dormhr_(char *, char *, integer *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, doublereal *, integer *, 	     doublereal *, integer *, integer *);    logical sorted;    doublereal smlnum;    integer lwkopt;/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- *//*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. *//*  -- April 2009                                                      -- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     ****************************************************************** *//*     Aggressive early deflation: *//*     This subroutine accepts as input an upper Hessenberg matrix *//*     H and performs an orthogonal similarity transformation *//*     designed to detect and deflate fully converged eigenvalues from *//*     a trailing principal submatrix.  On output H has been over- *//*     written by a new Hessenberg matrix that is a perturbation of *//*     an orthogonal similarity transformation of H.  It is to be *//*     hoped that the final version of H has many zero subdiagonal *//*     entries. *//*     ****************************************************************** *//*     WANTT   (input) LOGICAL *//*          If .TRUE., then the Hessenberg matrix H is fully updated *//*          so that the quasi-triangular Schur factor may be *//*          computed (in cooperation with the calling subroutine). *//*          If .FALSE., then only enough of H is updated to preserve *//*          the eigenvalues. *//*     WANTZ   (input) LOGICAL *//*          If .TRUE., then the orthogonal matrix Z is updated so *//*          so that the orthogonal Schur factor may be computed *//*          (in cooperation with the calling subroutine). *//*          If .FALSE., then Z is not referenced. *//*     N       (input) INTEGER *//*          The order of the matrix H and (if WANTZ is .TRUE.) the *//*          order of the orthogonal matrix Z. *//*     KTOP    (input) INTEGER *//*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. *//*          KBOT and KTOP together determine an isolated block *//*          along the diagonal of the Hessenberg matrix. *//*     KBOT    (input) INTEGER *//*          It is assumed without a check that either *//*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together *//*          determine an isolated block along the diagonal of the *//*          Hessenberg matrix. *//*     NW      (input) INTEGER *//*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1). *//*     H       (input/output) DOUBLE PRECISION array, dimension (LDH,N) *//*          On input the initial N-by-N section of H stores the *//*          Hessenberg matrix undergoing aggressive early deflation. *//*          On output H has been transformed by an orthogonal *//*          similarity transformation, perturbed, and the returned *//*          to Hessenberg form that (it is to be hoped) has some *//*          zero subdiagonal entries. *//*     LDH     (input) integer *//*          Leading dimension of H just as declared in the calling *//*          subroutine.  N .LE. LDH *//*     ILOZ    (input) INTEGER *//*     IHIZ    (input) INTEGER *//*          Specify the rows of Z to which transformations must be *//*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. *//*     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) *//*          IF WANTZ is .TRUE., then on output, the orthogonal *//*          similarity transformation mentioned above has been *//*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. *//*          If WANTZ is .FALSE., then Z is unreferenced. *//*     LDZ     (input) integer *//*          The leading dimension of Z just as declared in the *//*          calling subroutine.  1 .LE. LDZ. *//*     NS      (output) integer *//*          The number of unconverged (ie approximate) eigenvalues *//*          returned in SR and SI that may be used as shifts by the *//*          calling subroutine. *//*     ND      (output) integer *//*          The number of converged eigenvalues uncovered by this *//*          subroutine. *//*     SR      (output) DOUBLE PRECISION array, dimension KBOT *//*     SI      (output) DOUBLE PRECISION array, dimension KBOT *//*          On output, the real and imaginary parts of approximate *//*          eigenvalues that may be used for shifts are stored in *//*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and *//*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. *//*          The real and imaginary parts of converged eigenvalues *//*          are stored in SR(KBOT-ND+1) through SR(KBOT) and *//*          SI(KBOT-ND+1) through SI(KBOT), respectively. *//*     V       (workspace) DOUBLE PRECISION array, dimension (LDV,NW) *//*          An NW-by-NW work array. *//*     LDV     (input) integer scalar *//*          The leading dimension of V just as declared in the *//*          calling subroutine.  NW .LE. LDV *//*     NH      (input) integer scalar *//*          The number of columns of T.  NH.GE.NW. *//*     T       (workspace) DOUBLE PRECISION array, dimension (LDT,NW) *//*     LDT     (input) integer *//*          The leading dimension of T just as declared in the *//*          calling subroutine.  NW .LE. LDT *//*     NV      (input) integer *//*          The number of rows of work array WV available for *//*          workspace.  NV.GE.NW. *//*     WV      (workspace) DOUBLE PRECISION array, dimension (LDWV,NW) *//*     LDWV    (input) integer *//*          The leading dimension of W just as declared in the *//*          calling subroutine.  NW .LE. LDV *//*     WORK    (workspace) DOUBLE PRECISION array, dimension LWORK. *//*          On exit, WORK(1) is set to an estimate of the optimal value *//*          of LWORK for the given values of N, NW, KTOP and KBOT. *//*     LWORK   (input) integer *//*          The dimension of the work array WORK.  LWORK = 2*NW *//*          suffices, but greater efficiency may result from larger *//*          values of LWORK. *//*          If LWORK = -1, then a workspace query is assumed; DLAQR3 *//*          only estimates the optimal workspace size for the given *//*          values of N, NW, KTOP and KBOT.  The estimate is returned *//*          in WORK(1).  No error message related to LWORK is issued *//*          by XERBLA.  Neither H nor Z are accessed. *//*     ================================================================ *//*     Based on contributions by *//*        Karen Braman and Ralph Byers, Department of Mathematics, *//*        University of Kansas, USA *//*     ================================================================ *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     ==== Estimate optimal workspace. ==== */    /* Parameter adjustments */    h_dim1 = *ldh;    h_offset = 1 + h_dim1;    h__ -= h_offset;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --sr;    --si;    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    wv_dim1 = *ldwv;    wv_offset = 1 + wv_dim1;    wv -= wv_offset;    --work;    /* Function Body *//* Computing MIN */    i__1 = *nw, i__2 = *kbot - *ktop + 1;    jw = min(i__1,i__2);    if (jw <= 2) {	lwkopt = 1;    } else {/*        ==== Workspace query call to DGEHRD ==== */	i__1 = jw - 1;	dgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &		c_n1, &info);	lwk1 = (integer) work[1];/*        ==== Workspace query call to DORMHR ==== */	i__1 = jw - 1;	dormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], 		 &v[v_offset], ldv, &work[1], &c_n1, &info);	lwk2 = (integer) work[1];/*        ==== Workspace query call to DLAQR4 ==== */	dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1], 		&si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &		infqr);	lwk3 = (integer) work[1];/*        ==== Optimal workspace ==== *//* Computing MAX */	i__1 = jw + max(lwk1,lwk2);	lwkopt = max(i__1,lwk3);    }/*     ==== Quick return in case of workspace query. ==== */    if (*lwork == -1) {	work[1] = (doublereal) lwkopt;	return 0;    }/*     ==== Nothing to do ... *//*     ... for an empty active block ... ==== */    *ns = 0;    *nd = 0;    work[1] = 1.;    if (*ktop > *kbot) {	return 0;    }/*     ... nor for an empty deflation window. ==== */    if (*nw < 1) {	return 0;    }/*     ==== Machine constants ==== */    safmin = dlamch_("SAFE MINIMUM");    safmax = 1. / safmin;    dlabad_(&safmin, &safmax);    ulp = dlamch_("PRECISION");    smlnum = safmin * ((doublereal) (*n) / ulp);/*     ==== Setup deflation window ==== *//* Computing MIN */    i__1 = *nw, i__2 = *kbot - *ktop + 1;    jw = min(i__1,i__2);    kwtop = *kbot - jw + 1;    if (kwtop == *ktop) {	s = 0.;    } else {	s = h__[kwtop + (kwtop - 1) * h_dim1];    }    if (*kbot == kwtop) {/*        ==== 1-by-1 deflation window: not much to do ==== */	sr[kwtop] = h__[kwtop + kwtop * h_dim1];	si[kwtop] = 0.;	*ns = 1;	*nd = 0;/* Computing MAX */	d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs(		d__1));	if (abs(s) <= max(d__2,d__3)) {	    *ns = 0;	    *nd = 1;	    if (kwtop > *ktop) {		h__[kwtop + (kwtop - 1) * h_dim1] = 0.;	    }	}	work[1] = 1.;	return 0;    }/*     ==== Convert to spike-triangular form.  (In case of a *//*     .    rare QR failure, this routine continues to do *//*     .    aggressive early deflation using that part of *//*     .    the deflation window that converged using INFQR *//*     .    here and there to keep track.) ==== */    dlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 	    ldt);    i__1 = jw - 1;    i__2 = *ldh + 1;    i__3 = *ldt + 1;    dcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &	    i__3);    dlaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);    nmin = ilaenv_(&c__12, "DLAQR3", "SV", &jw, &c__1, &jw, lwork);    if (jw > nmin) {	dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], 		lwork, &infqr);    } else {	dlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);    }/*     ==== DTREXC needs a clean margin near the diagonal ==== */    i__1 = jw - 3;    for (j = 1; j <= i__1; ++j) {	t[j + 2 + j * t_dim1] = 0.;	t[j + 3 + j * t_dim1] = 0.;/* L10: */    }    if (jw > 2) {	t[jw + (jw - 2) * t_dim1] = 0.;    }/*     ==== Deflation detection loop ==== */    *ns = jw;    ilst = infqr + 1;L20:    if (ilst <= *ns) {	if (*ns == 1) {	    bulge = FALSE_;	} else {	    bulge = t[*ns + (*ns - 1) * t_dim1] != 0.;	}/*        ==== Small spike tip test for deflation ==== */	if (! bulge) {/*           ==== Real eigenvalue ==== */	    foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1));	    if (foo == 0.) {		foo = abs(s);	    }/* Computing MAX */	    d__2 = smlnum, d__3 = ulp * foo;	    if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= max(d__2,d__3))		     {/*              ==== Deflatable ==== */		--(*ns);	    } else {/*              ==== Undeflatable.   Move it up out of the way. *//*              .    (DTREXC can not fail in this case.) ==== */		ifst = *ns;		dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 			 &ilst, &work[1], &info);		++ilst;	    }	} else {/*           ==== Complex conjugate pair ==== */	    foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[*		    ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[*		    ns - 1 + *ns * t_dim1], abs(d__2)));	    if (foo == 0.) {		foo = abs(s);	    }/* Computing MAX */	    d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 =		     s * v[(*ns - 1) * v_dim1 + 1], abs(d__2));/* Computing MAX */	    d__5 = smlnum, d__6 = ulp * foo;	    if (max(d__3,d__4) <= max(d__5,d__6)) {/*              ==== Deflatable ==== */		*ns += -2;	    } else {/*              ==== Undeflatable. Move them up out of the way. *//*              .    Fortunately, DTREXC does the right thing with *//*              .    ILST in case of a rare exchange failure. ==== */		ifst = *ns;		dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 			 &ilst, &work[1], &info);		ilst += 2;	    }	}/*        ==== End deflation detection loop ==== */	goto L20;    }/*        ==== Return to Hessenberg form ==== */    if (*ns == 0) {	s = 0.;    }    if (*ns < jw) {/*        ==== sorting diagonal blocks of T improves accuracy for *//*        .    graded matrices.  Bubble sort deals well with *//*        .    exchange failures. ==== */	sorted = FALSE_;	i__ = *ns + 1;L30:	if (sorted) {	    goto L50;	}	sorted = TRUE_;	kend = i__ - 1;	i__ = infqr + 1;	if (i__ == *ns) {	    k = i__ + 1;	} else if (t[i__ + 1 + i__ * t_dim1] == 0.) {	    k = i__ + 1;	} else {	    k = i__ + 2;	}L40:	if (k <= kend) {	    if (k == i__ + 1) {		evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1));	    } else {		evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 =			 t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 =			 t[i__ + (i__ + 1) * t_dim1], abs(d__2)));	    }	    if (k == kend) {		evk = (d__1 = t[k + k * t_dim1], abs(d__1));	    } else if (t[k + 1 + k * t_dim1] == 0.) {		evk = (d__1 = t[k + k * t_dim1], abs(d__1));	    } else {		evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[			k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k + 			(k + 1) * t_dim1], abs(d__2)));	    }	    if (evi >= evk) {		i__ = k;	    } else {		sorted = FALSE_;		ifst = i__;		ilst = k;		dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 			 &ilst, &work[1], &info);		if (info == 0) {		    i__ = ilst;		} else {		    i__ = k;		}	    }	    if (i__ == kend) {		k = i__ + 1;	    } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {		k = i__ + 1;	    } else {		k = i__ + 2;	    }	    goto L40;	}	goto L30;L50:	;    }/*     ==== Restore shift/eigenvalue array from T ==== */    i__ = jw;L60:    if (i__ >= infqr + 1) {	if (i__ == infqr + 1) {	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];	    si[kwtop + i__ - 1] = 0.;	    --i__;	} else if (t[i__ + (i__ - 1) * t_dim1] == 0.) {	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];	    si[kwtop + i__ - 1] = 0.;	    --i__;	} else {	    aa = t[i__ - 1 + (i__ - 1) * t_dim1];	    cc = t[i__ + (i__ - 1) * t_dim1];	    bb = t[i__ - 1 + i__ * t_dim1];	    dd = t[i__ + i__ * t_dim1];	    dlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ 		    - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &		    sn);	    i__ += -2;	}	goto L60;    }    if (*ns < jw || s == 0.) {	if (*ns > 1 && s != 0.) {/*           ==== Reflect spike back into lower triangle ==== */	    dcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);	    beta = work[1];	    dlarfg_(ns, &beta, &work[2], &c__1, &tau);	    work[1] = 1.;	    i__1 = jw - 2;	    i__2 = jw - 2;	    dlaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);	    dlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &		    work[jw + 1]);	    dlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &		    work[jw + 1]);	    dlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &		    work[jw + 1]);	    i__1 = *lwork - jw;	    dgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1], &i__1, &info);	}/*        ==== Copy updated reduced window into place ==== */	if (kwtop > 1) {	    h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];	}	dlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1], ldh);	i__1 = jw - 1;	i__2 = *ldt + 1;	i__3 = *ldh + 1;	dcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], 		 &i__3);/*        ==== Accumulate orthogonal matrix in order update *//*        .    H and Z, if requested.  ==== */	if (*ns > 1 && s != 0.) {	    i__1 = *lwork - jw;	    dormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], 		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);	}/*        ==== Update vertical slab in H ==== */	if (*wantt) {	    ltop = 1;	} else {	    ltop = *ktop;	}	i__1 = kwtop - 1;	i__2 = *nv;	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 		i__2) {/* Computing MIN */	    i__3 = *nv, i__4 = kwtop - krow;	    kln = min(i__3,i__4);	    dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop * 		    h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset], 		    ldwv);	    dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 		    h_dim1], ldh);/* L70: */	}/*        ==== Update horizontal slab in H ==== */	if (*wantt) {	    i__2 = *n;	    i__1 = *nh;	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 		    kcol += i__1) {/* Computing MIN */		i__3 = *nh, i__4 = *n - kcol + 1;		kln = min(i__3,i__4);		dgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &			h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset], 			 ldt);		dlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *			 h_dim1], ldh);/* L80: */	    }	}/*        ==== Update vertical slab in Z ==== */	if (*wantz) {	    i__1 = *ihiz;	    i__2 = *nv;	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=		     i__2) {/* Computing MIN */		i__3 = *nv, i__4 = *ihiz - krow + 1;		kln = min(i__3,i__4);		dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop * 			z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[			wv_offset], ldwv);		dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 			kwtop * z_dim1], ldz);/* L90: */	    }	}    }/*     ==== Return the number of deflations ... ==== */    *nd = jw - *ns;/*     ==== ... and the number of shifts. (Subtracting *//*     .    INFQR from the spike length takes care *//*     .    of the case of a rare QR failure while *//*     .    calculating eigenvalues of the deflation *//*     .    window.)  ==== */    *ns -= infqr;/*      ==== Return optimal workspace. ==== */    work[1] = (doublereal) lwkopt;/*     ==== End of DLAQR3 ==== */    return 0;} /* dlaqr3_ */
 |