starpu_dlu_lu_model_21.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_4
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 1
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cuda0_impl0 (Comb4)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. ff82dda0 14745600 0.000000e+00 6.700359e+03 1.036459e+03 3.886208e+05 2.666205e+09 58
  39. d39bff17 6553600 0.000000e+00 2.067623e+03 3.658691e+02 3.825102e+05 8.156510e+08 185
  40. 2c1922b7 1638400 0.000000e+00 6.344928e+02 1.313164e+02 1.091328e+05 7.220992e+07 172
  41. ####################
  42. # COMB_5
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 2
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda2_impl0 (Comb5)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. ff82dda0 14745600 0.000000e+00 6.634729e+03 1.380283e+03 4.777005e+05 3.306586e+09 72
  72. d39bff17 6553600 0.000000e+00 2.102108e+03 3.770829e+02 2.690698e+05 5.838144e+08 128
  73. 2c1922b7 1638400 0.000000e+00 6.251127e+02 1.334964e+02 1.168961e+05 7.640580e+07 187
  74. ####################
  75. # COMB_0
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 4
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda4_impl0 (Comb0)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. ff82dda0 14745600 0.000000e+00 5.973111e+03 7.873858e+02 4.420102e+05 2.686054e+09 74
  105. d39bff17 6553600 0.000000e+00 2.088129e+03 3.411148e+02 2.129891e+05 4.566174e+08 102
  106. 2c1922b7 1638400 0.000000e+00 5.816119e+02 1.098601e+02 6.165086e+04 3.713622e+07 106
  107. ####################
  108. # COMB_6
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 6
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda6_impl0 (Comb6)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. ff82dda0 14745600 0.000000e+00 5.813439e+03 5.835403e+02 2.441645e+05 1.433737e+09 42
  138. d39bff17 6553600 0.000000e+00 2.170079e+03 5.032568e+02 7.161259e+04 1.637628e+08 33
  139. 2c1922b7 1638400 0.000000e+00 6.080488e+02 1.225789e+02 3.101049e+04 1.962219e+07 51
  140. ####################
  141. # COMB_8
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 0
  148. ####################
  149. # DEV_0
  150. # device id
  151. 0
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cpu0_impl0 (Comb8)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. ff82dda0 14745600 0.000000e+00 9.133611e+04 7.141260e+02 1.032098e+07 9.427358e+11 113
  171. d39bff17 6553600 0.000000e+00 2.797330e+04 6.068477e+02 1.482585e+06 4.149232e+10 53
  172. 2c1922b7 1638400 0.000000e+00 3.803279e+03 2.345034e+02 3.308852e+05 1.263233e+09 87
  173. ####################
  174. # COMB_1
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 3
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda3_impl0 (Comb1)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. ff82dda0 14745600 0.000000e+00 6.609495e+03 1.035460e+03 4.296172e+05 2.909244e+09 65
  204. d39bff17 6553600 0.000000e+00 2.129873e+03 3.868465e+02 3.407797e+05 7.497615e+08 160
  205. 2c1922b7 1638400 0.000000e+00 6.443548e+02 1.239934e+02 8.054435e+04 5.382094e+07 125
  206. ####################
  207. # COMB_3
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 7
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda7_impl0 (Comb3)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. ff82dda0 14745600 0.000000e+00 5.938773e+03 5.045720e+02 2.078570e+05 1.243326e+09 35
  237. d39bff17 6553600 0.000000e+00 2.180034e+03 4.239424e+02 1.286220e+05 2.910041e+08 59
  238. 2c1922b7 1638400 0.000000e+00 5.996256e+02 1.220514e+02 5.816368e+04 3.632139e+07 97
  239. ####################
  240. # COMB_7
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 5
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda5_impl0 (Comb7)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. ff82dda0 14745600 0.000000e+00 6.467618e+03 9.651621e+02 2.910428e+05 1.924273e+09 45
  270. d39bff17 6553600 0.000000e+00 2.057931e+03 3.333471e+02 1.872717e+05 3.955042e+08 91
  271. 2c1922b7 1638400 0.000000e+00 6.141799e+02 1.365857e+02 5.159111e+04 3.325329e+07 84
  272. ####################
  273. # COMB_2
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 1
  280. ####################
  281. # DEV_0
  282. # device id
  283. 1
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cuda1_impl0 (Comb2)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. ff82dda0 14745600 0.000000e+00 6.429538e+03 9.929716e+02 5.015040e+05 3.301346e+09 78
  303. d39bff17 6553600 0.000000e+00 2.056349e+03 3.356881e+02 4.565094e+05 9.637588e+08 222
  304. 2c1922b7 1638400 0.000000e+00 6.374873e+02 1.360140e+02 9.498561e+04 6.330859e+07 149