starpu_dgemm_gemm.mirage 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 4
  8. ####################
  9. # COMB_3
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb3)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 0b0b0ce8 7372800 2.621440e+08 2.783376e+04 1.016266e+03 2.254534e+06 6.283582e+10 81
  39. 492beed5 66355200 7.077888e+09 7.068870e+05 1.582112e+04 5.725785e+07 4.049511e+13 81
  40. 4220e23d 29491200 2.097152e+09 2.135531e+05 4.787239e+03 1.729780e+07 3.695855e+12 81
  41. ####################
  42. # COMB_2
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb2)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 0b0b0ce8 7372800 2.621440e+08 1.040745e+03 1.710737e+01 1.040745e+05 1.083442e+08 100
  72. 492beed5 66355200 7.077888e+09 2.322675e+04 6.514638e+01 2.438809e+06 5.664606e+10 105
  73. 4220e23d 29491200 2.097152e+09 7.042883e+03 4.736092e+01 7.395027e+05 5.208467e+09 105
  74. ####################
  75. # COMB_0
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 1
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda1_impl0 (Comb0)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 0b0b0ce8 7372800 2.621440e+08 1.057967e+03 4.209841e+01 1.057967e+05 1.121067e+08 100
  105. 492beed5 66355200 7.077888e+09 2.322865e+04 8.861437e+01 2.439008e+06 5.665569e+10 105
  106. 4220e23d 29491200 2.097152e+09 7.053091e+03 5.410169e+01 7.405746e+05 5.223647e+09 105
  107. ####################
  108. # COMB_1
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb1)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 0b0b0ce8 7372800 2.621440e+08 1.050834e+03 7.708100e+01 1.019309e+05 1.076889e+08 97
  138. 492beed5 66355200 7.077888e+09 2.323864e+04 5.619683e+01 2.440057e+06 5.670394e+10 105
  139. 4220e23d 29491200 2.097152e+09 7.040571e+03 3.296604e+01 7.392600e+05 5.204926e+09 105