chol_model_21.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. ff82dda0 7372800 8.856576e+08 4.711469e+04 4.337925e+02 3.203799e+06 1.509588e+11 68
  39. 2c1922b7 819200 3.287040e+07 1.979166e+03 8.798869e+01 6.828124e+05 1.354070e+09 345
  40. d39bff17 3276800 2.625536e+08 1.482664e+04 2.506296e+02 2.298130e+06 3.408328e+10 155
  41. ####################
  42. # COMB_4
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 1
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda1_impl0 (Comb4)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. ff82dda0 7372800 8.856576e+08 6.573848e+03 6.169449e+02 1.360787e+06 9.024393e+09 207
  72. 2c1922b7 819200 3.287040e+07 6.955196e+02 8.976154e+01 1.286711e+05 9.098386e+07 185
  73. d39bff17 3276800 2.625536e+08 2.647434e+03 2.520462e+02 4.685958e+05 1.251821e+09 177
  74. ####################
  75. # COMB_2
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 3
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda3_impl0 (Comb2)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. ff82dda0 7372800 8.856576e+08 6.555664e+03 6.950469e+02 1.252132e+06 8.300825e+09 191
  105. 2c1922b7 819200 3.287040e+07 6.812499e+02 8.342802e+01 1.273937e+05 8.808853e+07 187
  106. d39bff17 3276800 2.625536e+08 2.596800e+03 1.668067e+02 5.894736e+05 1.537061e+09 227
  107. ####################
  108. # COMB_3
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb3)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. ff82dda0 7372800 8.856576e+08 6.446442e+03 5.413553e+02 1.276395e+06 8.286236e+09 198
  138. 2c1922b7 819200 3.287040e+07 6.941204e+02 8.002896e+01 1.277182e+05 8.983023e+07 184
  139. d39bff17 3276800 2.625536e+08 2.630763e+03 2.300111e+02 4.603835e+05 1.220418e+09 175
  140. ####################
  141. # COMB_1
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 1
  148. ####################
  149. # DEV_0
  150. # device id
  151. 0
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cuda0_impl0 (Comb1)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. ff82dda0 7372800 8.856576e+08 6.554622e+03 7.028631e+02 1.238824e+06 8.213390e+09 189
  171. 2c1922b7 819200 3.287040e+07 6.905951e+02 7.284704e+01 1.353566e+05 9.451674e+07 196
  172. d39bff17 3276800 2.625536e+08 2.623425e+03 2.211699e+02 4.905805e+05 1.296149e+09 187
  173. ####################
  174. # COMB_7
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 4
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda4_impl0 (Comb7)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. ff82dda0 7372800 8.856576e+08 6.504271e+03 6.367049e+02 9.951534e+05 6.534773e+09 153
  204. 2c1922b7 819200 3.287040e+07 7.029111e+02 9.289767e+01 7.169693e+04 5.127683e+07 102
  205. d39bff17 3276800 2.625536e+08 2.684586e+03 3.481310e+02 4.080571e+05 1.113886e+09 152
  206. ####################
  207. # COMB_8
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 5
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda5_impl0 (Comb8)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. ff82dda0 7372800 8.856576e+08 6.618862e+03 8.843940e+02 8.405955e+05 5.663119e+09 127
  237. 2c1922b7 819200 3.287040e+07 7.079333e+02 9.356613e+01 6.796160e+04 4.895273e+07 96
  238. d39bff17 3276800 2.625536e+08 2.800887e+03 4.371231e+02 3.221020e+05 9.241450e+08 115
  239. ####################
  240. # COMB_5
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 6
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda6_impl0 (Comb5)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. ff82dda0 7372800 8.856576e+08 6.576395e+03 7.489644e+02 8.878133e+05 5.914339e+09 135
  270. 2c1922b7 819200 3.287040e+07 7.050156e+02 1.025857e+02 8.037177e+04 5.786307e+07 114
  271. d39bff17 3276800 2.625536e+08 2.645162e+03 2.750078e+02 4.205807e+05 1.124529e+09 159
  272. ####################
  273. # COMB_6
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 1
  280. ####################
  281. # DEV_0
  282. # device id
  283. 7
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cuda7_impl0 (Comb6)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. ff82dda0 7372800 8.856576e+08 6.544427e+03 6.576164e+02 9.358531e+05 6.186464e+09 143
  303. 2c1922b7 819200 3.287040e+07 7.150712e+02 1.054194e+02 8.223319e+04 6.008061e+07 115
  304. d39bff17 3276800 2.625536e+08 2.613530e+03 2.505172e+02 3.972565e+05 1.047781e+09 152