starpu.texi 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. These steps require to run autoconf and automake to generate the
  195. @code{./configure} script. This can be done by calling
  196. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  197. higher. You will also need makeinfo.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  633. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. @i{ cl_event event;}
  664. /* length of the vector */
  665. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  666. /* local copy of the vector pointer */
  667. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  668. @i{ id = starpu_worker_get_id();}
  669. @i{ devid = starpu_worker_get_devid(id);}
  670. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  671. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  672. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  673. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  674. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  675. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  676. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  677. @i{ @{}
  678. @i{ size_t global=1;}
  679. @i{ size_t local=1;}
  680. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  681. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @}}
  683. @i{ clFinish(queue);}
  684. @i{ starpu_opencl_collect_stats(event);}
  685. @i{ clReleaseEvent(event);}
  686. @i{ starpu_opencl_release_kernel(kernel);}
  687. @}
  688. @end smallexample
  689. @end cartouche
  690. @node Definition of the Main Code
  691. @subsection Definition of the Main Code
  692. The CPU implementation is the same as in the previous section.
  693. Here is the source of the main application. You can notice the value of the
  694. field @code{where} for the codelet. We specify
  695. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  696. can be executed either on a CPU or on a CUDA or an OpenCL device.
  697. @cartouche
  698. @smallexample
  699. #include <starpu.h>
  700. #define NX 2048
  701. extern void scal_cuda_func(void *buffers[], void *_args);
  702. extern void scal_cpu_func(void *buffers[], void *_args);
  703. extern void scal_opencl_func(void *buffers[], void *_args);
  704. /* @b{Definition of the codelet} */
  705. static starpu_codelet cl = @{
  706. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  707. /* @b{on a CUDA device, or on an OpenCL device} */
  708. .cuda_func = scal_cuda_func;
  709. .cpu_func = scal_cpu_func;
  710. .opencl_func = scal_opencl_func;
  711. .nbuffers = 1;
  712. @}
  713. #ifdef STARPU_USE_OPENCL
  714. /* @b{The compiled version of the OpenCL program} */
  715. struct starpu_opencl_program programs;
  716. #endif
  717. int main(int argc, char **argv)
  718. @{
  719. float *vector;
  720. int i, ret;
  721. float factor=3.0;
  722. struct starpu_task *task;
  723. starpu_data_handle vector_handle;
  724. starpu_init(NULL); /* @b{Initialising StarPU} */
  725. #ifdef STARPU_USE_OPENCL
  726. starpu_opencl_load_opencl_from_file(
  727. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  728. #endif
  729. vector = malloc(NX*sizeof(vector[0]));
  730. assert(vector);
  731. for(i=0 ; i<NX ; i++) vector[i] = i;
  732. @end smallexample
  733. @end cartouche
  734. @cartouche
  735. @smallexample
  736. /* @b{Registering data within StarPU} */
  737. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  738. NX, sizeof(vector[0]));
  739. /* @b{Definition of the task} */
  740. task = starpu_task_create();
  741. task->cl = &cl;
  742. task->buffers[0].handle = vector_handle;
  743. task->buffers[0].mode = STARPU_RW;
  744. task->cl_arg = &factor;
  745. task->cl_arg_size = sizeof(factor);
  746. @end smallexample
  747. @end cartouche
  748. @cartouche
  749. @smallexample
  750. /* @b{Submitting the task} */
  751. ret = starpu_task_submit(task);
  752. if (ret == -ENODEV) @{
  753. fprintf(stderr, "No worker may execute this task\n");
  754. return 1;
  755. @}
  756. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  757. /* @b{Waiting for its termination} */
  758. starpu_task_wait_for_all();
  759. /* @b{Update the vector in RAM} */
  760. starpu_data_acquire(vector_handle, STARPU_R);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Access the data} */
  766. for(i=0 ; i<NX; i++) @{
  767. fprintf(stderr, "%f ", vector[i]);
  768. @}
  769. fprintf(stderr, "\n");
  770. /* @b{Release the data and shutdown StarPU} */
  771. starpu_data_release(vector_handle);
  772. starpu_shutdown();
  773. return 0;
  774. @}
  775. @end smallexample
  776. @end cartouche
  777. @node Execution of Hybrid Vector Scaling
  778. @subsection Execution of Hybrid Vector Scaling
  779. The Makefile given at the beginning of the section must be extended to
  780. give the rules to compile the CUDA source code. Note that the source
  781. file of the OpenCL kernel does not need to be compiled now, it will
  782. be compiled at run-time when calling the function
  783. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  784. @cartouche
  785. @smallexample
  786. CFLAGS += $(shell pkg-config --cflags libstarpu)
  787. LDFLAGS += $(shell pkg-config --libs libstarpu)
  788. CC = gcc
  789. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  790. %.o: %.cu
  791. nvcc $(CFLAGS) $< -c $@
  792. clean:
  793. rm -f vector_scal *.o
  794. @end smallexample
  795. @end cartouche
  796. @smallexample
  797. % make
  798. @end smallexample
  799. and to execute it, with the default configuration:
  800. @smallexample
  801. % ./vector_scal
  802. 0.000000 3.000000 6.000000 9.000000 12.000000
  803. @end smallexample
  804. or for example, by disabling CPU devices:
  805. @smallexample
  806. % STARPU_NCPUS=0 ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  810. see @ref{Using accelerators}):
  811. @smallexample
  812. % STARPU_NCUDA=0 ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. @node Task and Worker Profiling
  816. @section Task and Worker Profiling
  817. A full example showing how to use the profiling API is available in
  818. the StarPU sources in the directory @code{examples/profiling/}.
  819. @cartouche
  820. @smallexample
  821. struct starpu_task *task = starpu_task_create();
  822. task->cl = &cl;
  823. task->synchronous = 1;
  824. /* We will destroy the task structure by hand so that we can
  825. * query the profiling info before the task is destroyed. */
  826. task->destroy = 0;
  827. /* Submit and wait for completion (since synchronous was set to 1) */
  828. starpu_task_submit(task);
  829. /* The task is finished, get profiling information */
  830. struct starpu_task_profiling_info *info = task->profiling_info;
  831. /* How much time did it take before the task started ? */
  832. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  833. /* How long was the task execution ? */
  834. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  835. /* We don't need the task structure anymore */
  836. starpu_task_destroy(task);
  837. @end smallexample
  838. @end cartouche
  839. @cartouche
  840. @smallexample
  841. /* Display the occupancy of all workers during the test */
  842. int worker;
  843. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  844. @{
  845. struct starpu_worker_profiling_info worker_info;
  846. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  847. STARPU_ASSERT(!ret);
  848. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  849. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  850. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  851. float executing_ratio = 100.0*executing_time/total_time;
  852. float sleeping_ratio = 100.0*sleeping_time/total_time;
  853. char workername[128];
  854. starpu_worker_get_name(worker, workername, 128);
  855. fprintf(stderr, "Worker %s:\n", workername);
  856. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  857. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  858. executing_ratio);
  859. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  860. sleeping_ratio);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. @node Partitioning Data
  865. @section Partitioning Data
  866. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  867. @cartouche
  868. @smallexample
  869. int vector[NX];
  870. starpu_data_handle handle;
  871. /* Declare data to StarPU */
  872. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  873. /* Partition the vector in PARTS sub-vectors */
  874. starpu_filter f =
  875. @{
  876. .filter_func = starpu_block_filter_func_vector,
  877. .nchildren = PARTS,
  878. .get_nchildren = NULL,
  879. .get_child_ops = NULL
  880. @};
  881. starpu_data_partition(handle, &f);
  882. @end smallexample
  883. @end cartouche
  884. @cartouche
  885. @smallexample
  886. /* Submit a task on each sub-vector */
  887. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  888. /* Get subdata number i (there is only 1 dimension) */
  889. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  890. struct starpu_task *task = starpu_task_create();
  891. task->buffers[0].handle = sub_handle;
  892. task->buffers[0].mode = STARPU_RW;
  893. task->cl = &cl;
  894. task->synchronous = 1;
  895. task->cl_arg = &factor;
  896. task->cl_arg_size = sizeof(factor);
  897. starpu_task_submit(task);
  898. @}
  899. @end smallexample
  900. @end cartouche
  901. Partitioning can be applied several times, see
  902. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  903. @node Performance model example
  904. @section Performance model example
  905. To achieve good scheduling, StarPU scheduling policies need to be able to
  906. estimate in advance the duration of a task. This is done by giving to codelets a
  907. performance model. There are several kinds of performance models.
  908. @itemize
  909. @item
  910. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  911. see for instance
  912. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  913. @item
  914. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  915. given set of data input/output sizes, the performance will always be about the
  916. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  917. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  918. few different sets of data input/output sizes. StarPU will then keep record of
  919. the average time of previous executions on the various processing units, and use
  920. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  921. for further executions. The following is a small code example.
  922. @cartouche
  923. @smallexample
  924. static struct starpu_perfmodel_t mult_perf_model = @{
  925. .type = STARPU_HISTORY_BASED,
  926. .symbol = "mult_perf_model"
  927. @};
  928. starpu_codelet cl = @{
  929. .where = STARPU_CPU,
  930. .cpu_func = cpu_mult,
  931. .nbuffers = 3,
  932. /* for the scheduling policy to be able to use performance models */
  933. .model = &mult_perf_model
  934. @};
  935. @end smallexample
  936. @end cartouche
  937. @item
  938. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  939. type). This still assumes performance regularity, but can work with various data
  940. input sizes, by applying a*n^b+c regression over observed execution times.
  941. @end itemize
  942. The same can be done for task power consumption estimation, by setting the
  943. @code{power_model} field the same way as the @code{model} field. Note: for
  944. now, the application has to give to the power consumption performance model
  945. a different name.
  946. @node Theoretical lower bound on execution time
  947. @section Theoretical lower bound on execution time
  948. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  949. bound for the execution time of a whole set of tasks. See for
  950. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  951. call @code{starpu_bound_start}, and after complete execution, call
  952. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  953. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  954. problem corresponding to the schedule of your tasks. Run it through
  955. @code{lp_solve} or any other linear programming solver, and that will give you a
  956. lower bound for the total execution time of your tasks. If StarPU was compiled
  957. with the glpk library installed, @code{starpu_bound_compute} can be used to
  958. solve it immediately and get the optimized minimum. Its @code{integer}
  959. parameter allows to decide whether integer resolution should be computed
  960. and returned.
  961. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  962. dependencies into account. It must be understood that the linear programming
  963. problem size is quadratic with the number of tasks and thus the time to solve it
  964. will be very long, it could be minutes for just a few dozen tasks. You should
  965. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  966. problem to MPS format and then use a better solver, @code{glpsol} might be
  967. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  968. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  969. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  970. of @code{lp_solve}. For instance, we often just use
  971. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  972. the @code{-gr} option can also be quite useful.
  973. Setting @code{deps} to 0 will only take into account the actual computations
  974. on processing units. It however still properly takes into account the varying
  975. performances of kernels and processing units, which is quite more accurate than
  976. just comparing StarPU performances with the fastest of the kernels being used.
  977. The @code{prio} parameter tells StarPU whether to simulate taking into account
  978. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  979. tasks before less prioritized tasks, to check to which extend this results
  980. to a less optimal solution. This increases even more computation time.
  981. Note that for simplicity, all this however doesn't take into account data
  982. transfers, which are assumed to be completely overlapped.
  983. @node More examples
  984. @section More examples
  985. More examples are available in the StarPU sources in the @code{examples/}
  986. directory. Simple examples include:
  987. @table @asis
  988. @item @code{incrementer/}:
  989. Trivial incrementation test.
  990. @item @code{basic_examples/}:
  991. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  992. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  993. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  994. interface, and an example using the variable data interface.
  995. @item @code{matvecmult/}:
  996. OpenCL example from NVidia, adapted to StarPU.
  997. @item @code{axpy/}:
  998. AXPY CUBLAS operation adapted to StarPU.
  999. @item @code{fortran/}:
  1000. Example of Fortran bindings.
  1001. @end table
  1002. More advanced examples include:
  1003. @table @asis
  1004. @item @code{filters/}:
  1005. Examples using filters, as shown in @ref{Partitioning Data}.
  1006. @item @code{lu/}:
  1007. LU matrix factorization.
  1008. @end table
  1009. @c ---------------------------------------------------------------------
  1010. @c Performance options
  1011. @c ---------------------------------------------------------------------
  1012. @node Performance optimization
  1013. @chapter How to optimize performance with StarPU
  1014. TODO: improve!
  1015. @menu
  1016. * Data management::
  1017. * Task scheduling policy::
  1018. * Task distribution vs Data transfer::
  1019. * Power-based scheduling::
  1020. * Profiling::
  1021. * CUDA-specific optimizations::
  1022. @end menu
  1023. Simply encapsulating application kernels into tasks already permits to
  1024. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1025. few additional changes are needed.
  1026. @node Data management
  1027. @section Data management
  1028. By default, StarPU does not enable data prefetching, because CUDA does
  1029. not announce when too many data transfers were scheduled and can thus block
  1030. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1031. .
  1032. By default, StarPU leaves replicates of data wherever they were used, in case they
  1033. will be re-used by other tasks, thus saving the data transfer time. When some
  1034. task modifies some data, all the other replicates are invalidated, and only the
  1035. processing unit will have a valid replicate of the data. If the application knows
  1036. that this data will not be re-used by further tasks, it should advise StarPU to
  1037. immediately replicate it to a desired list of memory nodes (given through a
  1038. bitmask). This can be understood like the write-through mode of CPU caches.
  1039. @example
  1040. starpu_data_set_wt_mask(img_handle, 1<<0);
  1041. @end example
  1042. will for instance request to always transfer a replicate into the main memory (node
  1043. 0), as bit 0 of the write-through bitmask is being set.
  1044. When the application allocates data, whenever possible it should use the
  1045. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1046. OpenCL to make the allocation itself and pin the corresponding allocated
  1047. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1048. transfer to overlap with computations.
  1049. @node Task scheduling policy
  1050. @section Task scheduling policy
  1051. By default, StarPU uses a simple greedy scheduler. To improve performance,
  1052. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1053. variable. For instancel @code{export STARPU_SCHED=dmda} . Use @code{help}
  1054. to get the list of available schedulers.
  1055. Most schedulers are based on an estimation of codelet duration on each kind
  1056. of processing unit. For this to be possible, the application programmer needs
  1057. to configure a performance model for the codelets of the application (see
  1058. @ref{Performance model example} for instance). History-based performance models
  1059. use on-line calibration. StarPU will automatically calibrate codelets
  1060. which have never been calibrated yet. To force continuing calibration, use
  1061. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1062. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1063. Note: due to CUDA limitations, to be able to measure kernel duration,
  1064. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1065. disables data transfer / computation overlapping, and should thus not be used
  1066. for eventual benchmarks.
  1067. @node Task distribution vs Data transfer
  1068. @section Task distribution vs Data transfer
  1069. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1070. thus needs to find a balance between both. The target function that the
  1071. @code{dmda} scheduler of StarPU
  1072. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1073. @code{T_execution} is the estimated execution time of the codelet (usually
  1074. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1075. latter is however estimated based on bus calibration before execution start,
  1076. i.e. with an idle machine. You can force bus re-calibration by running
  1077. @code{starpu_calibrate_bus}. When StarPU manages several GPUs, such estimation
  1078. is not accurate any more. Beta can then be used to correct this by hand. For
  1079. instance, you can use @code{export STARPU_BETA=2} to double the transfer
  1080. time estimation, e.g. because there are two GPUs in the machine. This is of
  1081. course imprecise, but in practice, a rough estimation already gives the good
  1082. results that a precise estimation would give.
  1083. Measuring the actual data transfer time is however on our TODO-list to
  1084. accurately estimate data transfer penalty without the need of a hand-tuned beta parameter.
  1085. @node Power-based scheduling
  1086. @section Power-based scheduling
  1087. If the application can provide some power performance model (through
  1088. the @code{power_model} field of the codelet structure), StarPU will
  1089. take it into account when distributing tasks. The target function that
  1090. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1091. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1092. is the estimated task consumption in Joules. To tune this parameter, use
  1093. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1094. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1095. alpha and beta to zero permits to only take into account power consumption.
  1096. The power actually consumed by the total execution can be displayed by setting
  1097. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1098. @node Profiling
  1099. @section Profiling
  1100. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1101. calling @code{starpu_profiling_status_set} from the source code.
  1102. Statistics on the execution can then be obtained by using @code{export
  1103. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1104. stats will include an approximation of the number of executed tasks even if
  1105. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1106. execution did happen on accelerators without penalizing performance with
  1107. the profiling overhead. More details on performance feedback are provided by the
  1108. next chapter.
  1109. @node CUDA-specific optimizations
  1110. @section CUDA-specific optimizations
  1111. Due to CUDA limitations, StarPU will have a hard time overlapping
  1112. communications and computations if the application does not use a dedicated
  1113. CUDA stream for its computations. StarPU provides one by the use of
  1114. @code{starpu_cuda_get_local_stream()}. For instance:
  1115. @example
  1116. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1117. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1118. @end example
  1119. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1120. @c ---------------------------------------------------------------------
  1121. @c Performance feedback
  1122. @c ---------------------------------------------------------------------
  1123. @node Performance feedback
  1124. @chapter Performance feedback
  1125. @menu
  1126. * On-line:: On-line performance feedback
  1127. * Off-line:: Off-line performance feedback
  1128. * Codelet performance:: Performance of codelets
  1129. @end menu
  1130. @node On-line
  1131. @section On-line performance feedback
  1132. @menu
  1133. * Enabling monitoring:: Enabling on-line performance monitoring
  1134. * Task feedback:: Per-task feedback
  1135. * Codelet feedback:: Per-codelet feedback
  1136. * Worker feedback:: Per-worker feedback
  1137. * Bus feedback:: Bus-related feedback
  1138. @end menu
  1139. @node Enabling monitoring
  1140. @subsection Enabling on-line performance monitoring
  1141. In order to enable online performance monitoring, the application can call
  1142. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1143. detect whether monitoring is already enabled or not by calling
  1144. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1145. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1146. can also be set to 1 to achieve the same effect.
  1147. Likewise, performance monitoring is stopped by calling
  1148. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1149. does not reset the performance counters so that the application may consult
  1150. them later on.
  1151. More details about the performance monitoring API are available in section
  1152. @ref{Profiling API}.
  1153. @node Task feedback
  1154. @subsection Per-task feedback
  1155. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1156. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1157. structure when a task terminates.
  1158. This structure is automatically destroyed when the task structure is destroyed,
  1159. either automatically or by calling @code{starpu_task_destroy}.
  1160. The @code{starpu_task_profiling_info} structure indicates the date when the
  1161. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1162. terminated (@code{end_time}), relative to the initialization of
  1163. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1164. that has executed the task (@code{workerid}).
  1165. These date are stored as @code{timespec} structures which the user may convert
  1166. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1167. function.
  1168. It it worth noting that the application may directly access this structure from
  1169. the callback executed at the end of the task. The @code{starpu_task} structure
  1170. associated to the callback currently being executed is indeed accessible with
  1171. the @code{starpu_get_current_task()} function.
  1172. @node Codelet feedback
  1173. @subsection Per-codelet feedback
  1174. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1175. an array of counters. The i-th entry of the array is incremented every time a
  1176. task implementing the codelet is executed on the i-th worker.
  1177. This array is not reinitialized when profiling is enabled or disabled.
  1178. @node Worker feedback
  1179. @subsection Per-worker feedback
  1180. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1181. function is a @code{starpu_worker_profiling_info} structure that gives
  1182. statistics about the specified worker. This structure specifies when StarPU
  1183. started collecting profiling information for that worker (@code{start_time}),
  1184. the duration of the profiling measurement interval (@code{total_time}), the
  1185. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1186. because there is no task to execute at all (@code{sleeping_time}), and the
  1187. number of tasks that were executed while profiling was enabled.
  1188. These values give an estimation of the proportion of time spent do real work,
  1189. and the time spent either sleeping because there are not enough executable
  1190. tasks or simply wasted in pure StarPU overhead.
  1191. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1192. information associated to a worker.
  1193. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1194. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1195. generate a graphic showing the evolution of these values during the time, for
  1196. the different workers.
  1197. @node Bus feedback
  1198. @subsection Bus-related feedback
  1199. TODO
  1200. @c how to enable/disable performance monitoring
  1201. @c what kind of information do we get ?
  1202. @node Off-line
  1203. @section Off-line performance feedback
  1204. @menu
  1205. * Generating traces:: Generating traces with FxT
  1206. * Gantt diagram:: Creating a Gantt Diagram
  1207. * DAG:: Creating a DAG with graphviz
  1208. * starpu-top:: Monitoring activity
  1209. @end menu
  1210. @node Generating traces
  1211. @subsection Generating traces with FxT
  1212. StarPU can use the FxT library (see
  1213. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1214. with a limited runtime overhead.
  1215. You can either get the FxT library from CVS (autotools are required):
  1216. @example
  1217. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1218. % ./bootstrap
  1219. @end example
  1220. If autotools are not available on your machine, or if you prefer to do so,
  1221. FxT's code is also available as a tarball:
  1222. @example
  1223. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1224. @end example
  1225. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1226. done following the standard procedure:
  1227. @example
  1228. % ./configure --prefix=$FXTDIR
  1229. % make
  1230. % make install
  1231. @end example
  1232. In order to have StarPU to generate traces, StarPU should be configured with
  1233. the @code{--with-fxt} option:
  1234. @example
  1235. $ ./configure --with-fxt=$FXTDIR
  1236. @end example
  1237. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1238. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1239. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1240. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1241. @code{/tmp/} directory by default, or by the directory specified by
  1242. the @code{STARPU_FXT_PREFIX} environment variable.
  1243. @node Gantt diagram
  1244. @subsection Creating a Gantt Diagram
  1245. When the FxT trace file @code{filename} has been generated, it is possible to
  1246. generate a trace in the Paje format by calling:
  1247. @example
  1248. % starpu_fxt_tool -i filename
  1249. @end example
  1250. This will create a @code{paje.trace} file in the current directory that can be
  1251. inspected with the ViTE trace visualizing open-source tool. More information
  1252. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1253. possible to open the @code{paje.trace} file with ViTE by using the following
  1254. command:
  1255. @example
  1256. % vite paje.trace
  1257. @end example
  1258. @node DAG
  1259. @subsection Creating a DAG with graphviz
  1260. When the FxT trace file @code{filename} has been generated, it is possible to
  1261. generate a task graph in the DOT format by calling:
  1262. @example
  1263. $ starpu_fxt_tool -i filename
  1264. @end example
  1265. This will create a @code{dag.dot} file in the current directory. This file is a
  1266. task graph described using the DOT language. It is possible to get a
  1267. graphical output of the graph by using the graphviz library:
  1268. @example
  1269. $ dot -Tpdf dag.dot -o output.pdf
  1270. @end example
  1271. @node starpu-top
  1272. @subsection Monitoring activity
  1273. When the FxT trace file @code{filename} has been generated, it is possible to
  1274. generate a activity trace by calling:
  1275. @example
  1276. $ starpu_fxt_tool -i filename
  1277. @end example
  1278. This will create an @code{activity.data} file in the current
  1279. directory. A profile of the application showing the activity of StarPU
  1280. during the execution of the program can be generated:
  1281. @example
  1282. $ starpu_top.sh activity.data
  1283. @end example
  1284. This will create a file named @code{activity.eps} in the current directory.
  1285. This picture is composed of two parts.
  1286. The first part shows the activity of the different workers. The green sections
  1287. indicate which proportion of the time was spent executed kernels on the
  1288. processing unit. The red sections indicate the proportion of time spent in
  1289. StartPU: an important overhead may indicate that the granularity may be too
  1290. low, and that bigger tasks may be appropriate to use the processing unit more
  1291. efficiently. The black sections indicate that the processing unit was blocked
  1292. because there was no task to process: this may indicate a lack of parallelism
  1293. which may be alleviated by creating more tasks when it is possible.
  1294. The second part of the @code{activity.eps} picture is a graph showing the
  1295. evolution of the number of tasks available in the system during the execution.
  1296. Ready tasks are shown in black, and tasks that are submitted but not
  1297. schedulable yet are shown in grey.
  1298. @node Codelet performance
  1299. @section Performance of codelets
  1300. The performance model of codelets can be examined by using the
  1301. @code{starpu_perfmodel_display} tool:
  1302. @example
  1303. $ starpu_perfmodel_display -l
  1304. file: <malloc_pinned.hannibal>
  1305. file: <starpu_slu_lu_model_21.hannibal>
  1306. file: <starpu_slu_lu_model_11.hannibal>
  1307. file: <starpu_slu_lu_model_22.hannibal>
  1308. file: <starpu_slu_lu_model_12.hannibal>
  1309. @end example
  1310. Here, the codelets of the lu example are available. We can examine the
  1311. performance of the 22 kernel:
  1312. @example
  1313. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1314. performance model for cpu
  1315. # hash size mean dev n
  1316. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1317. performance model for cuda_0
  1318. # hash size mean dev n
  1319. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1320. performance model for cuda_1
  1321. # hash size mean dev n
  1322. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1323. performance model for cuda_2
  1324. # hash size mean dev n
  1325. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1326. @end example
  1327. We can see that for the given size, over a sample of a few hundreds of
  1328. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1329. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1330. CPUs.
  1331. @c ---------------------------------------------------------------------
  1332. @c MPI support
  1333. @c ---------------------------------------------------------------------
  1334. @node StarPU MPI support
  1335. @chapter StarPU MPI support
  1336. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1337. @c ---------------------------------------------------------------------
  1338. @c Configuration options
  1339. @c ---------------------------------------------------------------------
  1340. @node Configuring StarPU
  1341. @chapter Configuring StarPU
  1342. @menu
  1343. * Compilation configuration::
  1344. * Execution configuration through environment variables::
  1345. @end menu
  1346. @node Compilation configuration
  1347. @section Compilation configuration
  1348. The following arguments can be given to the @code{configure} script.
  1349. @menu
  1350. * Common configuration::
  1351. * Configuring workers::
  1352. * Advanced configuration::
  1353. @end menu
  1354. @node Common configuration
  1355. @subsection Common configuration
  1356. @menu
  1357. * --enable-debug::
  1358. * --enable-fast::
  1359. * --enable-verbose::
  1360. * --enable-coverage::
  1361. @end menu
  1362. @node --enable-debug
  1363. @subsubsection @code{--enable-debug}
  1364. @table @asis
  1365. @item @emph{Description}:
  1366. Enable debugging messages.
  1367. @end table
  1368. @node --enable-fast
  1369. @subsubsection @code{--enable-fast}
  1370. @table @asis
  1371. @item @emph{Description}:
  1372. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1373. @end table
  1374. @node --enable-verbose
  1375. @subsubsection @code{--enable-verbose}
  1376. @table @asis
  1377. @item @emph{Description}:
  1378. Augment the verbosity of the debugging messages.
  1379. @end table
  1380. @node --enable-coverage
  1381. @subsubsection @code{--enable-coverage}
  1382. @table @asis
  1383. @item @emph{Description}:
  1384. Enable flags for the @code{gcov} coverage tool.
  1385. @end table
  1386. @node Configuring workers
  1387. @subsection Configuring workers
  1388. @menu
  1389. * --enable-nmaxcpus::
  1390. * --disable-cpu::
  1391. * --enable-maxcudadev::
  1392. * --disable-cuda::
  1393. * --with-cuda-dir::
  1394. * --with-cuda-include-dir::
  1395. * --with-cuda-lib-dir::
  1396. * --enable-maxopencldev::
  1397. * --disable-opencl::
  1398. * --with-opencl-dir::
  1399. * --with-opencl-include-dir::
  1400. * --with-opencl-lib-dir::
  1401. * --enable-gordon::
  1402. * --with-gordon-dir::
  1403. @end menu
  1404. @node --enable-nmaxcpus
  1405. @subsubsection @code{--enable-nmaxcpus=<number>}
  1406. @table @asis
  1407. @item @emph{Description}:
  1408. Defines the maximum number of CPU cores that StarPU will support, then
  1409. available as the @code{STARPU_NMAXCPUS} macro.
  1410. @end table
  1411. @node --disable-cpu
  1412. @subsubsection @code{--disable-cpu}
  1413. @table @asis
  1414. @item @emph{Description}:
  1415. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1416. @end table
  1417. @node --enable-maxcudadev
  1418. @subsubsection @code{--enable-maxcudadev=<number>}
  1419. @table @asis
  1420. @item @emph{Description}:
  1421. Defines the maximum number of CUDA devices that StarPU will support, then
  1422. available as the @code{STARPU_MAXCUDADEVS} macro.
  1423. @end table
  1424. @node --disable-cuda
  1425. @subsubsection @code{--disable-cuda}
  1426. @table @asis
  1427. @item @emph{Description}:
  1428. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1429. @end table
  1430. @node --with-cuda-dir
  1431. @subsubsection @code{--with-cuda-dir=<path>}
  1432. @table @asis
  1433. @item @emph{Description}:
  1434. Specify the directory where CUDA is installed. This directory should notably contain
  1435. @code{include/cuda.h}.
  1436. @end table
  1437. @node --with-cuda-include-dir
  1438. @subsubsection @code{--with-cuda-include-dir=<path>}
  1439. @table @asis
  1440. @item @emph{Description}:
  1441. Specify the directory where CUDA headers are installed. This directory should
  1442. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1443. value given to @code{--with-cuda-dir}.
  1444. @end table
  1445. @node --with-cuda-lib-dir
  1446. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1447. @table @asis
  1448. @item @emph{Description}:
  1449. Specify the directory where the CUDA library is installed. This directory should
  1450. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1451. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1452. @end table
  1453. @node --enable-maxopencldev
  1454. @subsubsection @code{--enable-maxopencldev=<number>}
  1455. @table @asis
  1456. @item @emph{Description}:
  1457. Defines the maximum number of OpenCL devices that StarPU will support, then
  1458. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1459. @end table
  1460. @node --disable-opencl
  1461. @subsubsection @code{--disable-opencl}
  1462. @table @asis
  1463. @item @emph{Description}:
  1464. Disable the use of OpenCL, even if the SDK is detected.
  1465. @end table
  1466. @node --with-opencl-dir
  1467. @subsubsection @code{--with-opencl-dir=<path>}
  1468. @table @asis
  1469. @item @emph{Description}:
  1470. Specify the location of the OpenCL SDK. This directory should notably contain
  1471. @code{include/CL/cl.h}.
  1472. @end table
  1473. @node --with-opencl-include-dir
  1474. @subsubsection @code{--with-opencl-include-dir=<path>}
  1475. @table @asis
  1476. @item @emph{Description}:
  1477. Specify the location of OpenCL headers. This directory should notably contain
  1478. @code{CL/cl.h}. This defaults to
  1479. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1480. @end table
  1481. @node --with-opencl-lib-dir
  1482. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1483. @table @asis
  1484. @item @emph{Description}:
  1485. Specify the location of the OpenCL library. This directory should notably
  1486. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1487. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1488. @end table
  1489. @node --enable-gordon
  1490. @subsubsection @code{--enable-gordon}
  1491. @table @asis
  1492. @item @emph{Description}:
  1493. Enable the use of the Gordon runtime for Cell SPUs.
  1494. @c TODO: rather default to enabled when detected
  1495. @end table
  1496. @node --with-gordon-dir
  1497. @subsubsection @code{--with-gordon-dir=<path>}
  1498. @table @asis
  1499. @item @emph{Description}:
  1500. Specify the location of the Gordon SDK.
  1501. @end table
  1502. @node Advanced configuration
  1503. @subsection Advanced configuration
  1504. @menu
  1505. * --enable-perf-debug::
  1506. * --enable-model-debug::
  1507. * --enable-stats::
  1508. * --enable-maxbuffers::
  1509. * --enable-allocation-cache::
  1510. * --enable-opengl-render::
  1511. * --enable-blas-lib::
  1512. * --with-magma::
  1513. * --with-fxt::
  1514. * --with-perf-model-dir::
  1515. * --with-mpicc::
  1516. * --with-goto-dir::
  1517. * --with-atlas-dir::
  1518. * --with-mkl-cflags::
  1519. * --with-mkl-ldflags::
  1520. @end menu
  1521. @node --enable-perf-debug
  1522. @subsubsection @code{--enable-perf-debug}
  1523. @table @asis
  1524. @item @emph{Description}:
  1525. Enable performance debugging.
  1526. @end table
  1527. @node --enable-model-debug
  1528. @subsubsection @code{--enable-model-debug}
  1529. @table @asis
  1530. @item @emph{Description}:
  1531. Enable performance model debugging.
  1532. @end table
  1533. @node --enable-stats
  1534. @subsubsection @code{--enable-stats}
  1535. @table @asis
  1536. @item @emph{Description}:
  1537. Enable statistics.
  1538. @end table
  1539. @node --enable-maxbuffers
  1540. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1541. @table @asis
  1542. @item @emph{Description}:
  1543. Define the maximum number of buffers that tasks will be able to take
  1544. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1545. @end table
  1546. @node --enable-allocation-cache
  1547. @subsubsection @code{--enable-allocation-cache}
  1548. @table @asis
  1549. @item @emph{Description}:
  1550. Enable the use of a data allocation cache to avoid the cost of it with
  1551. CUDA. Still experimental.
  1552. @end table
  1553. @node --enable-opengl-render
  1554. @subsubsection @code{--enable-opengl-render}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Enable the use of OpenGL for the rendering of some examples.
  1558. @c TODO: rather default to enabled when detected
  1559. @end table
  1560. @node --enable-blas-lib
  1561. @subsubsection @code{--enable-blas-lib=<name>}
  1562. @table @asis
  1563. @item @emph{Description}:
  1564. Specify the blas library to be used by some of the examples. The
  1565. library has to be 'atlas' or 'goto'.
  1566. @end table
  1567. @node --with-magma
  1568. @subsubsection @code{--with-magma=<path>}
  1569. @table @asis
  1570. @item @emph{Description}:
  1571. Specify where magma is installed. This directory should notably contain
  1572. @code{include/magmablas.h}.
  1573. @end table
  1574. @node --with-fxt
  1575. @subsubsection @code{--with-fxt=<path>}
  1576. @table @asis
  1577. @item @emph{Description}:
  1578. Specify the location of FxT (for generating traces and rendering them
  1579. using ViTE). This directory should notably contain
  1580. @code{include/fxt/fxt.h}.
  1581. @c TODO add ref to other section
  1582. @end table
  1583. @node --with-perf-model-dir
  1584. @subsubsection @code{--with-perf-model-dir=<dir>}
  1585. @table @asis
  1586. @item @emph{Description}:
  1587. Specify where performance models should be stored (instead of defaulting to the
  1588. current user's home).
  1589. @end table
  1590. @node --with-mpicc
  1591. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1592. @table @asis
  1593. @item @emph{Description}:
  1594. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1595. @end table
  1596. @node --with-goto-dir
  1597. @subsubsection @code{--with-goto-dir=<dir>}
  1598. @table @asis
  1599. @item @emph{Description}:
  1600. Specify the location of GotoBLAS.
  1601. @end table
  1602. @node --with-atlas-dir
  1603. @subsubsection @code{--with-atlas-dir=<dir>}
  1604. @table @asis
  1605. @item @emph{Description}:
  1606. Specify the location of ATLAS. This directory should notably contain
  1607. @code{include/cblas.h}.
  1608. @end table
  1609. @node --with-mkl-cflags
  1610. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1611. @table @asis
  1612. @item @emph{Description}:
  1613. Specify the compilation flags for the MKL Library.
  1614. @end table
  1615. @node --with-mkl-ldflags
  1616. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1617. @table @asis
  1618. @item @emph{Description}:
  1619. Specify the linking flags for the MKL Library. Note that the
  1620. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1621. website provides a script to determine the linking flags.
  1622. @end table
  1623. @c ---------------------------------------------------------------------
  1624. @c Environment variables
  1625. @c ---------------------------------------------------------------------
  1626. @node Execution configuration through environment variables
  1627. @section Execution configuration through environment variables
  1628. @menu
  1629. * Workers:: Configuring workers
  1630. * Scheduling:: Configuring the Scheduling engine
  1631. * Misc:: Miscellaneous and debug
  1632. @end menu
  1633. Note: the values given in @code{starpu_conf} structure passed when
  1634. calling @code{starpu_init} will override the values of the environment
  1635. variables.
  1636. @node Workers
  1637. @subsection Configuring workers
  1638. @menu
  1639. * STARPU_NCPUS:: Number of CPU workers
  1640. * STARPU_NCUDA:: Number of CUDA workers
  1641. * STARPU_NOPENCL:: Number of OpenCL workers
  1642. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1643. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1644. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1645. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1646. @end menu
  1647. @node STARPU_NCPUS
  1648. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1649. @table @asis
  1650. @item @emph{Description}:
  1651. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1652. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1653. the accelerators.
  1654. @end table
  1655. @node STARPU_NCUDA
  1656. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1657. @table @asis
  1658. @item @emph{Description}:
  1659. Specify the number of CUDA devices that StarPU can use. If
  1660. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1661. possible to select which CUDA devices should be used by the means of the
  1662. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1663. create as many CUDA workers as there are CUDA devices.
  1664. @end table
  1665. @node STARPU_NOPENCL
  1666. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1667. @table @asis
  1668. @item @emph{Description}:
  1669. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1670. @end table
  1671. @node STARPU_NGORDON
  1672. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1673. @table @asis
  1674. @item @emph{Description}:
  1675. Specify the number of SPUs that StarPU can use.
  1676. @end table
  1677. @node STARPU_WORKERS_CPUID
  1678. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1679. @table @asis
  1680. @item @emph{Description}:
  1681. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1682. specifies on which logical CPU the different workers should be
  1683. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1684. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1685. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1686. determined by the OS, or provided by the @code{hwloc} library in case it is
  1687. available.
  1688. Note that the first workers correspond to the CUDA workers, then come the
  1689. OpenCL and the SPU, and finally the CPU workers. For example if
  1690. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1691. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1692. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1693. the logical CPUs #1 and #3 will be used by the CPU workers.
  1694. If the number of workers is larger than the array given in
  1695. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1696. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1697. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1698. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1699. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1700. @end table
  1701. @node STARPU_WORKERS_CUDAID
  1702. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1703. @table @asis
  1704. @item @emph{Description}:
  1705. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1706. possible to select which CUDA devices should be used by StarPU. On a machine
  1707. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1708. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1709. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1710. the one reported by CUDA).
  1711. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1712. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1713. @end table
  1714. @node STARPU_WORKERS_OPENCLID
  1715. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1716. @table @asis
  1717. @item @emph{Description}:
  1718. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1719. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1720. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1721. @end table
  1722. @node Scheduling
  1723. @subsection Configuring the Scheduling engine
  1724. @menu
  1725. * STARPU_SCHED:: Scheduling policy
  1726. * STARPU_CALIBRATE:: Calibrate performance models
  1727. * STARPU_PREFETCH:: Use data prefetch
  1728. * STARPU_SCHED_ALPHA:: Computation factor
  1729. * STARPU_SCHED_BETA:: Communication factor
  1730. @end menu
  1731. @node STARPU_SCHED
  1732. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1733. @table @asis
  1734. @item @emph{Description}:
  1735. This chooses between the different scheduling policies proposed by StarPU: work
  1736. random, stealing, greedy, with performance models, etc.
  1737. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1738. @end table
  1739. @node STARPU_CALIBRATE
  1740. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1741. @table @asis
  1742. @item @emph{Description}:
  1743. If this variable is set to 1, the performance models are calibrated during
  1744. the execution. If it is set to 2, the previous values are dropped to restart
  1745. calibration from scratch. Setting this variable to 0 disable calibration, this
  1746. is the default behaviour.
  1747. Note: this currently only applies to dm and dmda scheduling policies.
  1748. @end table
  1749. @node STARPU_PREFETCH
  1750. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1751. @table @asis
  1752. @item @emph{Description}:
  1753. This variable indicates whether data prefetching should be enabled (0 means
  1754. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1755. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1756. advance, so that data is already present on the GPU when the task starts. As a
  1757. result, computation and data transfers are overlapped.
  1758. @end table
  1759. @node STARPU_SCHED_ALPHA
  1760. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1761. @table @asis
  1762. @item @emph{Description}:
  1763. To estimate the cost of a task StarPU takes into account the estimated
  1764. computation time (obtained thanks to performance models). The alpha factor is
  1765. the coefficient to be applied to it before adding it to the communication part.
  1766. @end table
  1767. @node STARPU_SCHED_BETA
  1768. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1769. @table @asis
  1770. @item @emph{Description}:
  1771. To estimate the cost of a task StarPU takes into account the estimated
  1772. data transfer time (obtained thanks to performance models). The beta factor is
  1773. the coefficient to be applied to it before adding it to the computation part.
  1774. @end table
  1775. @node Misc
  1776. @subsection Miscellaneous and debug
  1777. @menu
  1778. * STARPU_LOGFILENAME:: Select debug file name
  1779. * STARPU_FXT_PREFIX:: FxT trace location
  1780. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1781. @end menu
  1782. @node STARPU_LOGFILENAME
  1783. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1784. @table @asis
  1785. @item @emph{Description}:
  1786. This variable specifies in which file the debugging output should be saved to.
  1787. @end table
  1788. @node STARPU_FXT_PREFIX
  1789. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1790. @table @asis
  1791. @item @emph{Description}
  1792. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1793. @end table
  1794. @node STARPU_LIMIT_GPU_MEM
  1795. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1796. @table @asis
  1797. @item @emph{Description}
  1798. This variable specifies the maximum number of megabytes that should be
  1799. available to the application on each GPUs. In case this value is smaller than
  1800. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1801. on the device. This variable is intended to be used for experimental purposes
  1802. as it emulates devices that have a limited amount of memory.
  1803. @end table
  1804. @c ---------------------------------------------------------------------
  1805. @c StarPU API
  1806. @c ---------------------------------------------------------------------
  1807. @node StarPU API
  1808. @chapter StarPU API
  1809. @menu
  1810. * Initialization and Termination:: Initialization and Termination methods
  1811. * Workers' Properties:: Methods to enumerate workers' properties
  1812. * Data Library:: Methods to manipulate data
  1813. * Data Interfaces::
  1814. * Data Partition::
  1815. * Codelets and Tasks:: Methods to construct tasks
  1816. * Explicit Dependencies:: Explicit Dependencies
  1817. * Implicit Data Dependencies:: Implicit Data Dependencies
  1818. * Performance Model API::
  1819. * Profiling API:: Profiling API
  1820. * CUDA extensions:: CUDA extensions
  1821. * OpenCL extensions:: OpenCL extensions
  1822. * Cell extensions:: Cell extensions
  1823. * Miscellaneous helpers::
  1824. @end menu
  1825. @node Initialization and Termination
  1826. @section Initialization and Termination
  1827. @menu
  1828. * starpu_init:: Initialize StarPU
  1829. * struct starpu_conf:: StarPU runtime configuration
  1830. * starpu_conf_init:: Initialize starpu_conf structure
  1831. * starpu_shutdown:: Terminate StarPU
  1832. @end menu
  1833. @node starpu_init
  1834. @subsection @code{starpu_init} -- Initialize StarPU
  1835. @table @asis
  1836. @item @emph{Description}:
  1837. This is StarPU initialization method, which must be called prior to any other
  1838. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1839. policy, number of cores, ...) by passing a non-null argument. Default
  1840. configuration is used if the passed argument is @code{NULL}.
  1841. @item @emph{Return value}:
  1842. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1843. indicates that no worker was available (so that StarPU was not initialized).
  1844. @item @emph{Prototype}:
  1845. @code{int starpu_init(struct starpu_conf *conf);}
  1846. @end table
  1847. @node struct starpu_conf
  1848. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1849. @table @asis
  1850. @item @emph{Description}:
  1851. This structure is passed to the @code{starpu_init} function in order
  1852. to configure StarPU.
  1853. When the default value is used, StarPU automatically selects the number
  1854. of processing units and takes the default scheduling policy. This parameter
  1855. overwrites the equivalent environment variables.
  1856. @item @emph{Fields}:
  1857. @table @asis
  1858. @item @code{sched_policy_name} (default = NULL):
  1859. This is the name of the scheduling policy. This can also be specified with the
  1860. @code{STARPU_SCHED} environment variable.
  1861. @item @code{sched_policy} (default = NULL):
  1862. This is the definition of the scheduling policy. This field is ignored
  1863. if @code{sched_policy_name} is set.
  1864. @item @code{ncpus} (default = -1):
  1865. This is the number of CPU cores that StarPU can use. This can also be
  1866. specified with the @code{STARPU_NCPUS} environment variable.
  1867. @item @code{ncuda} (default = -1):
  1868. This is the number of CUDA devices that StarPU can use. This can also be
  1869. specified with the @code{STARPU_NCUDA} environment variable.
  1870. @item @code{nopencl} (default = -1):
  1871. This is the number of OpenCL devices that StarPU can use. This can also be
  1872. specified with the @code{STARPU_NOPENCL} environment variable.
  1873. @item @code{nspus} (default = -1):
  1874. This is the number of Cell SPUs that StarPU can use. This can also be
  1875. specified with the @code{STARPU_NGORDON} environment variable.
  1876. @item @code{use_explicit_workers_bindid} (default = 0)
  1877. If this flag is set, the @code{workers_bindid} array indicates where the
  1878. different workers are bound, otherwise StarPU automatically selects where to
  1879. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1880. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1881. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1882. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1883. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1884. where to bind the different workers. The i-th entry of the
  1885. @code{workers_bindid} indicates the logical identifier of the processor which
  1886. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1887. either determined by the OS, or provided by the @code{hwloc} library in case it
  1888. is available.
  1889. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1890. ignored.
  1891. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1892. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1893. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1894. CUDA devices in a round-robin fashion.
  1895. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1896. ignored.
  1897. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1898. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1899. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1900. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1901. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1902. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1903. OpenCL devices in a round-robin fashion.
  1904. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1905. @item @code{calibrate} (default = 0):
  1906. If this flag is set, StarPU will calibrate the performance models when
  1907. executing tasks. If this value is equal to -1, the default value is used. The
  1908. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1909. variable when it is set.
  1910. @end table
  1911. @end table
  1912. @node starpu_conf_init
  1913. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1914. @table @asis
  1915. This function initializes the @code{starpu_conf} structure passed as argument with the default values.
  1916. @item @emph{Return value}:
  1917. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1918. indicates that the argument was NULL.
  1919. @item @emph{Prototype}:
  1920. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1921. @end table
  1922. @node starpu_shutdown
  1923. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1924. @table @asis
  1925. @item @emph{Description}:
  1926. This is StarPU termination method. It must be called at the end of the
  1927. application: statistics and other post-mortem debugging information are not
  1928. guaranteed to be available until this method has been called.
  1929. @item @emph{Prototype}:
  1930. @code{void starpu_shutdown(void);}
  1931. @end table
  1932. @node Workers' Properties
  1933. @section Workers' Properties
  1934. @menu
  1935. * starpu_worker_get_count:: Get the number of processing units
  1936. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1937. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1938. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1939. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1940. * starpu_worker_get_id:: Get the identifier of the current worker
  1941. * starpu_worker_get_devid:: Get the device identifier of a worker
  1942. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1943. * starpu_worker_get_name:: Get the name of a worker
  1944. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1945. @end menu
  1946. @node starpu_worker_get_count
  1947. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1948. @table @asis
  1949. @item @emph{Description}:
  1950. This function returns the number of workers (i.e. processing units executing
  1951. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1952. @item @emph{Prototype}:
  1953. @code{unsigned starpu_worker_get_count(void);}
  1954. @end table
  1955. @node starpu_cpu_worker_get_count
  1956. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1957. @table @asis
  1958. @item @emph{Description}:
  1959. This function returns the number of CPUs controlled by StarPU. The returned
  1960. value should be at most @code{STARPU_NMAXCPUS}.
  1961. @item @emph{Prototype}:
  1962. @code{unsigned starpu_cpu_worker_get_count(void);}
  1963. @end table
  1964. @node starpu_cuda_worker_get_count
  1965. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1966. @table @asis
  1967. @item @emph{Description}:
  1968. This function returns the number of CUDA devices controlled by StarPU. The returned
  1969. value should be at most @code{STARPU_MAXCUDADEVS}.
  1970. @item @emph{Prototype}:
  1971. @code{unsigned starpu_cuda_worker_get_count(void);}
  1972. @end table
  1973. @node starpu_opencl_worker_get_count
  1974. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1975. @table @asis
  1976. @item @emph{Description}:
  1977. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1978. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1979. @item @emph{Prototype}:
  1980. @code{unsigned starpu_opencl_worker_get_count(void);}
  1981. @end table
  1982. @node starpu_spu_worker_get_count
  1983. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1984. @table @asis
  1985. @item @emph{Description}:
  1986. This function returns the number of Cell SPUs controlled by StarPU.
  1987. @item @emph{Prototype}:
  1988. @code{unsigned starpu_opencl_worker_get_count(void);}
  1989. @end table
  1990. @node starpu_worker_get_id
  1991. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  1992. @table @asis
  1993. @item @emph{Description}:
  1994. This function returns the identifier of the worker associated to the calling
  1995. thread. The returned value is either -1 if the current context is not a StarPU
  1996. worker (i.e. when called from the application outside a task or a callback), or
  1997. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  1998. @item @emph{Prototype}:
  1999. @code{int starpu_worker_get_id(void);}
  2000. @end table
  2001. @node starpu_worker_get_devid
  2002. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2003. @table @asis
  2004. @item @emph{Description}:
  2005. This functions returns the device id of the worker associated to an identifier
  2006. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2007. CUDA worker, this device identifier is the logical device identifier exposed by
  2008. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2009. identifier of a CPU worker is the logical identifier of the core on which the
  2010. worker was bound; this identifier is either provided by the OS or by the
  2011. @code{hwloc} library in case it is available.
  2012. @item @emph{Prototype}:
  2013. @code{int starpu_worker_get_devid(int id);}
  2014. @end table
  2015. @node starpu_worker_get_type
  2016. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2017. @table @asis
  2018. @item @emph{Description}:
  2019. This function returns the type of worker associated to an identifier (as
  2020. returned by the @code{starpu_worker_get_id} function). The returned value
  2021. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2022. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2023. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2024. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2025. identifier is unspecified.
  2026. @item @emph{Prototype}:
  2027. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2028. @end table
  2029. @node starpu_worker_get_name
  2030. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2031. @table @asis
  2032. @item @emph{Description}:
  2033. StarPU associates a unique human readable string to each processing unit. This
  2034. function copies at most the @code{maxlen} first bytes of the unique string
  2035. associated to a worker identified by its identifier @code{id} into the
  2036. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2037. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2038. function on an invalid identifier results in an unspecified behaviour.
  2039. @item @emph{Prototype}:
  2040. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2041. @end table
  2042. @node starpu_worker_get_memory_node
  2043. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2044. @table @asis
  2045. @item @emph{Description}:
  2046. This function returns the identifier of the memory node associated to the
  2047. worker identified by @code{workerid}.
  2048. @item @emph{Prototype}:
  2049. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2050. @end table
  2051. @node Data Library
  2052. @section Data Library
  2053. This section describes the data management facilities provided by StarPU.
  2054. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2055. design their own data interfaces if required.
  2056. @menu
  2057. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2058. * starpu_access_mode:: Data access mode
  2059. * unsigned memory_node:: Memory node
  2060. * starpu_data_handle:: StarPU opaque data handle
  2061. * void *interface:: StarPU data interface
  2062. * starpu_data_register:: Register a piece of data to StarPU
  2063. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2064. * starpu_data_invalidate:: Invalidate all data replicates
  2065. * starpu_data_acquire:: Access registered data from the application
  2066. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2067. * starpu_data_release:: Release registered data from the application
  2068. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2069. @end menu
  2070. @node starpu_data_malloc_pinned_if_possible
  2071. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2072. @table @asis
  2073. @item @emph{Description}:
  2074. This function allocates data of the given size. It will also try to pin it in
  2075. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2076. thus permit data transfer and computation overlapping.
  2077. @item @emph{Prototype}:
  2078. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2079. @end table
  2080. @node starpu_access_mode
  2081. @subsection @code{starpu_access_mode} -- Data access mode
  2082. This datatype describes a data access mode. The different available modes are:
  2083. @table @asis
  2084. @table @asis
  2085. @item @code{STARPU_R} read-only mode.
  2086. @item @code{STARPU_W} write-only mode.
  2087. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2088. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2089. @end table
  2090. @end table
  2091. @node unsigned memory_node
  2092. @subsection @code{unsigned memory_node} -- Memory node
  2093. @table @asis
  2094. @item @emph{Description}:
  2095. Every worker is associated to a memory node which is a logical abstraction of
  2096. the address space from which the processing unit gets its data. For instance,
  2097. the memory node associated to the different CPU workers represents main memory
  2098. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2099. Every memory node is identified by a logical index which is accessible from the
  2100. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2101. to StarPU, the specified memory node indicates where the piece of data
  2102. initially resides (we also call this memory node the home node of a piece of
  2103. data).
  2104. @end table
  2105. @node starpu_data_handle
  2106. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2107. @table @asis
  2108. @item @emph{Description}:
  2109. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2110. data. Once a piece of data has been registered to StarPU, it is associated to a
  2111. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2112. over the entire machine, so that we can maintain data consistency and locate
  2113. data replicates for instance.
  2114. @end table
  2115. @node void *interface
  2116. @subsection @code{void *interface} -- StarPU data interface
  2117. @table @asis
  2118. @item @emph{Description}:
  2119. Data management is done at a high-level in StarPU: rather than accessing a mere
  2120. list of contiguous buffers, the tasks may manipulate data that are described by
  2121. a high-level construct which we call data interface.
  2122. An example of data interface is the "vector" interface which describes a
  2123. contiguous data array on a spefic memory node. This interface is a simple
  2124. structure containing the number of elements in the array, the size of the
  2125. elements, and the address of the array in the appropriate address space (this
  2126. address may be invalid if there is no valid copy of the array in the memory
  2127. node). More informations on the data interfaces provided by StarPU are
  2128. given in @ref{Data Interfaces}.
  2129. When a piece of data managed by StarPU is used by a task, the task
  2130. implementation is given a pointer to an interface describing a valid copy of
  2131. the data that is accessible from the current processing unit.
  2132. @end table
  2133. @node starpu_data_register
  2134. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2135. @table @asis
  2136. @item @emph{Description}:
  2137. Register a piece of data into the handle located at the @code{handleptr}
  2138. address. The @code{interface} buffer contains the initial description of the
  2139. data in the home node. The @code{ops} argument is a pointer to a structure
  2140. describing the different methods used to manipulate this type of interface. See
  2141. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2142. If @code{home_node} is -1, StarPU will automatically
  2143. allocate the memory when it is used for the
  2144. first time in write-only mode. Once such data handle has been automatically
  2145. allocated, it is possible to access it using any access mode.
  2146. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2147. matrix) which can be registered by the means of helper functions (e.g.
  2148. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2149. @item @emph{Prototype}:
  2150. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2151. uint32_t home_node,
  2152. void *interface,
  2153. struct starpu_data_interface_ops_t *ops);}
  2154. @end table
  2155. @node starpu_data_unregister
  2156. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2157. @table @asis
  2158. @item @emph{Description}:
  2159. This function unregisters a data handle from StarPU. If the data was
  2160. automatically allocated by StarPU because the home node was -1, all
  2161. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2162. is put back into the home node in the buffer that was initially registered.
  2163. Using a data handle that has been unregistered from StarPU results in an
  2164. undefined behaviour.
  2165. @item @emph{Prototype}:
  2166. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2167. @end table
  2168. @node starpu_data_invalidate
  2169. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2170. @table @asis
  2171. @item @emph{Description}:
  2172. Destroy all replicates of the data handle. After data invalidation, the first
  2173. access to the handle must be performed in write-only mode. Accessing an
  2174. invalidated data in read-mode results in undefined behaviour.
  2175. @item @emph{Prototype}:
  2176. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2177. @end table
  2178. @c TODO create a specific sections about user interaction with the DSM ?
  2179. @node starpu_data_acquire
  2180. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2181. @table @asis
  2182. @item @emph{Description}:
  2183. The application must call this function prior to accessing registered data from
  2184. main memory outside tasks. StarPU ensures that the application will get an
  2185. up-to-date copy of the data in main memory located where the data was
  2186. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2187. be consistent with the access mode specified in the @code{mode} argument.
  2188. @code{starpu_data_release} must be called once the application does not need to
  2189. access the piece of data anymore.
  2190. Note that implicit data dependencies are also enforced by
  2191. @code{starpu_data_acquire} in case they are enabled.
  2192. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2193. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2194. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2195. @item @emph{Prototype}:
  2196. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2197. @end table
  2198. @node starpu_data_acquire_cb
  2199. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2200. @table @asis
  2201. @item @emph{Description}:
  2202. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2203. @code{starpu_data_release}. When the data specified in the first argument is
  2204. available in the appropriate access mode, the callback function is executed.
  2205. The application may access the requested data during the execution of this
  2206. callback. The callback function must call @code{starpu_data_release} once the
  2207. application does not need to access the piece of data anymore.
  2208. Note that implicit data dependencies are also enforced by
  2209. @code{starpu_data_acquire_cb} in case they are enabled.
  2210. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2211. be called from task callbacks. Upon successful completion, this function
  2212. returns 0.
  2213. @item @emph{Prototype}:
  2214. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2215. @end table
  2216. @node starpu_data_release
  2217. @subsection @code{starpu_data_release} -- Release registered data from the application
  2218. @table @asis
  2219. @item @emph{Description}:
  2220. This function releases the piece of data acquired by the application either by
  2221. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2222. @item @emph{Prototype}:
  2223. @code{void starpu_data_release(starpu_data_handle handle);}
  2224. @end table
  2225. @node starpu_data_set_wt_mask
  2226. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2227. @table @asis
  2228. @item @emph{Description}:
  2229. This function sets the write-through mask of a given data, i.e. a bitmask of
  2230. nodes where the data should be always replicated after modification.
  2231. @item @emph{Prototype}:
  2232. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2233. @end table
  2234. @node Data Interfaces
  2235. @section Data Interfaces
  2236. @menu
  2237. * Variable Interface::
  2238. * Vector Interface::
  2239. * Matrix Interface::
  2240. * 3D Matrix Interface::
  2241. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2242. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2243. @end menu
  2244. @node Variable Interface
  2245. @subsection Variable Interface
  2246. @table @asis
  2247. @item @emph{Description}:
  2248. This variant of @code{starpu_data_register} uses the variable interface,
  2249. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2250. and @code{elemsize} is the size of the variable.
  2251. @item @emph{Prototype}:
  2252. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2253. uint32_t home_node,
  2254. uintptr_t ptr, size_t elemsize);}
  2255. @item @emph{Example}:
  2256. @cartouche
  2257. @smallexample
  2258. float var;
  2259. starpu_data_handle var_handle;
  2260. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2261. @end smallexample
  2262. @end cartouche
  2263. @end table
  2264. @node Vector Interface
  2265. @subsection Vector Interface
  2266. @table @asis
  2267. @item @emph{Description}:
  2268. This variant of @code{starpu_data_register} uses the vector interface,
  2269. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2270. element in the home node. @code{nx} is the number of elements in the vector.
  2271. @code{elemsize} is the size of each element.
  2272. @item @emph{Prototype}:
  2273. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2274. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2275. @item @emph{Example}:
  2276. @cartouche
  2277. @smallexample
  2278. float vector[NX];
  2279. starpu_data_handle vector_handle;
  2280. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2281. sizeof(vector[0]));
  2282. @end smallexample
  2283. @end cartouche
  2284. @end table
  2285. @node Matrix Interface
  2286. @subsection Matrix Interface
  2287. @table @asis
  2288. @item @emph{Description}:
  2289. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2290. matrices of elements. @code{ptr} is the address of the first element in the home
  2291. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2292. of elements in a row (this can be different from @code{ld} if there are extra
  2293. elements for alignment for instance). @code{ny} is the number of rows.
  2294. @code{elemsize} is the size of each element.
  2295. @item @emph{Prototype}:
  2296. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2297. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2298. uint32_t ny, size_t elemsize);}
  2299. @item @emph{Example}:
  2300. @cartouche
  2301. @smallexample
  2302. float *matrix;
  2303. starpu_data_handle matrix_handle;
  2304. matrix = (float*)malloc(width * height * sizeof(float));
  2305. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2306. width, width, height, sizeof(float));
  2307. @end smallexample
  2308. @end cartouche
  2309. @end table
  2310. @node 3D Matrix Interface
  2311. @subsection 3D Matrix Interface
  2312. @table @asis
  2313. @item @emph{Description}:
  2314. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2315. @code{ptr} is the address of the array of first element in the home node.
  2316. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2317. of rows between z planes. @code{nx} is the number of elements in a row (this
  2318. can be different from @code{ldy} if there are extra elements for alignment
  2319. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2320. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2321. each element.
  2322. @item @emph{Prototype}:
  2323. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2324. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2325. uint32_t ny, uint32_t nz, size_t elemsize);}
  2326. @item @emph{Example}:
  2327. @cartouche
  2328. @smallexample
  2329. float *block;
  2330. starpu_data_handle block_handle;
  2331. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2332. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2333. nx, nx*ny, nx, ny, nz, sizeof(float));
  2334. @end smallexample
  2335. @end cartouche
  2336. @end table
  2337. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2338. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2339. @table @asis
  2340. @item @emph{Description}:
  2341. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2342. TODO
  2343. @item @emph{Prototype}:
  2344. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2345. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2346. @item @emph{Example}:
  2347. @cartouche
  2348. @smallexample
  2349. @end smallexample
  2350. @end cartouche
  2351. @end table
  2352. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2353. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2354. @table @asis
  2355. @item @emph{Description}:
  2356. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2357. TODO
  2358. @item @emph{Prototype}:
  2359. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2360. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2361. @item @emph{Example}:
  2362. @cartouche
  2363. @smallexample
  2364. @end smallexample
  2365. @end cartouche
  2366. @end table
  2367. @node Data Partition
  2368. @section Data Partition
  2369. @menu
  2370. * struct starpu_data_filter:: StarPU filter structure
  2371. * starpu_data_partition:: Partition Data
  2372. * starpu_data_unpartition:: Unpartition Data
  2373. * starpu_data_get_nb_children::
  2374. * starpu_data_get_sub_data::
  2375. * Predefined filter functions::
  2376. @end menu
  2377. @node struct starpu_data_filter
  2378. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2379. @table @asis
  2380. @item @emph{Description}:
  2381. The filter structure describes a data partitioning operation, to be given to the
  2382. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2383. @item @emph{Fields}:
  2384. @table @asis
  2385. @item @code{filter_func}:
  2386. This function fills the @code{child_interface} structure with interface
  2387. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2388. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2389. @item @code{nchildren}:
  2390. This is the number of parts to partition the data into.
  2391. @item @code{get_nchildren}:
  2392. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2393. children depends on the actual data (e.g. the number of blocks in a sparse
  2394. matrix).
  2395. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2396. @item @code{get_child_ops}:
  2397. In case the resulting children use a different data interface, this function
  2398. returns which interface is used by child number @code{id}.
  2399. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2400. @item @code{filter_arg}:
  2401. Some filters take an addition parameter, but this is usually unused.
  2402. @item @code{filter_arg_ptr}:
  2403. Some filters take an additional array parameter like the sizes of the parts, but
  2404. this is usually unused.
  2405. @end table
  2406. @end table
  2407. @node starpu_data_partition
  2408. @subsection starpu_data_partition -- Partition Data
  2409. @table @asis
  2410. @item @emph{Description}:
  2411. This requests partitioning one StarPU data @code{initial_handle} into several
  2412. subdata according to the filter @code{f}
  2413. @item @emph{Prototype}:
  2414. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2415. @item @emph{Example}:
  2416. @cartouche
  2417. @smallexample
  2418. struct starpu_data_filter f = @{
  2419. .filter_func = starpu_vertical_block_filter_func,
  2420. .nchildren = nslicesx,
  2421. .get_nchildren = NULL,
  2422. .get_child_ops = NULL
  2423. @};
  2424. starpu_data_partition(A_handle, &f);
  2425. @end smallexample
  2426. @end cartouche
  2427. @end table
  2428. @node starpu_data_unpartition
  2429. @subsection starpu_data_unpartition -- Unpartition data
  2430. @table @asis
  2431. @item @emph{Description}:
  2432. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2433. collected back into one big piece in the @code{gathering_node} (usually 0).
  2434. @item @emph{Prototype}:
  2435. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2436. @item @emph{Example}:
  2437. @cartouche
  2438. @smallexample
  2439. starpu_data_unpartition(A_handle, 0);
  2440. @end smallexample
  2441. @end cartouche
  2442. @end table
  2443. @node starpu_data_get_nb_children
  2444. @subsection starpu_data_get_nb_children
  2445. @table @asis
  2446. @item @emph{Description}:
  2447. This function returns the number of children.
  2448. @item @emph{Return value}:
  2449. The number of children.
  2450. @item @emph{Prototype}:
  2451. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2452. @end table
  2453. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2454. @node starpu_data_get_sub_data
  2455. @subsection starpu_data_get_sub_data
  2456. @table @asis
  2457. @item @emph{Description}:
  2458. After partitioning a StarPU data by applying a filter,
  2459. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2460. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2461. is the number of filters to traverse (in case several filters have been applied,
  2462. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2463. parameters are the indexes.
  2464. @item @emph{Return value}:
  2465. A handle to the subdata.
  2466. @item @emph{Prototype}:
  2467. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2468. @item @emph{Example}:
  2469. @cartouche
  2470. @smallexample
  2471. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2472. @end smallexample
  2473. @end cartouche
  2474. @end table
  2475. @node Predefined filter functions
  2476. @subsection Predefined filter functions
  2477. @menu
  2478. * Partitioning BCSR Data::
  2479. * Partitioning BLAS interface::
  2480. * Partitioning Vector Data::
  2481. * Partitioning Block Data::
  2482. @end menu
  2483. This section gives a partial list of the predefined partitioning functions.
  2484. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2485. list can be found in @code{starpu_data_filters.h} .
  2486. @node Partitioning BCSR Data
  2487. @subsubsection Partitioning BCSR Data
  2488. @table @asis
  2489. @item @emph{Description}:
  2490. TODO
  2491. @item @emph{Prototype}:
  2492. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2493. @end table
  2494. @table @asis
  2495. @item @emph{Description}:
  2496. TODO
  2497. @item @emph{Prototype}:
  2498. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2499. @end table
  2500. @node Partitioning BLAS interface
  2501. @subsubsection Partitioning BLAS interface
  2502. @table @asis
  2503. @item @emph{Description}:
  2504. This partitions a dense Matrix into horizontal blocks.
  2505. @item @emph{Prototype}:
  2506. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2507. @end table
  2508. @table @asis
  2509. @item @emph{Description}:
  2510. This partitions a dense Matrix into vertical blocks.
  2511. @item @emph{Prototype}:
  2512. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2513. @end table
  2514. @node Partitioning Vector Data
  2515. @subsubsection Partitioning Vector Data
  2516. @table @asis
  2517. @item @emph{Description}:
  2518. This partitions a vector into blocks of the same size.
  2519. @item @emph{Prototype}:
  2520. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2521. @end table
  2522. @table @asis
  2523. @item @emph{Description}:
  2524. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2525. @item @emph{Prototype}:
  2526. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2527. @end table
  2528. @table @asis
  2529. @item @emph{Description}:
  2530. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2531. @item @emph{Prototype}:
  2532. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2533. @end table
  2534. @node Partitioning Block Data
  2535. @subsubsection Partitioning Block Data
  2536. @table @asis
  2537. @item @emph{Description}:
  2538. This partitions a 3D matrix along the X axis.
  2539. @item @emph{Prototype}:
  2540. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2541. @end table
  2542. @node Codelets and Tasks
  2543. @section Codelets and Tasks
  2544. @menu
  2545. * struct starpu_codelet:: StarPU codelet structure
  2546. * struct starpu_task:: StarPU task structure
  2547. * starpu_task_init:: Initialize a Task
  2548. * starpu_task_create:: Allocate and Initialize a Task
  2549. * starpu_task_deinit:: Release all the resources used by a Task
  2550. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2551. * starpu_task_wait:: Wait for the termination of a Task
  2552. * starpu_task_submit:: Submit a Task
  2553. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2554. * starpu_get_current_task:: Return the task currently executed by the worker
  2555. * starpu_display_codelet_stats:: Display statistics
  2556. @end menu
  2557. @node struct starpu_codelet
  2558. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2559. @table @asis
  2560. @item @emph{Description}:
  2561. The codelet structure describes a kernel that is possibly implemented on various
  2562. targets. For compatibility, make sure to initialize the whole structure to zero.
  2563. @item @emph{Fields}:
  2564. @table @asis
  2565. @item @code{where}:
  2566. Indicates which types of processing units are able to execute the codelet.
  2567. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2568. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2569. indicates that it is only available on Cell SPUs.
  2570. @item @code{cpu_func} (optional):
  2571. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2572. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2573. argument being the array of data managed by the data management library, and
  2574. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2575. field of the @code{starpu_task} structure.
  2576. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2577. the @code{where} field, it must be non-null otherwise.
  2578. @item @code{cuda_func} (optional):
  2579. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2580. must be a host-function written in the CUDA runtime API}. Its prototype must
  2581. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2582. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2583. field, it must be non-null otherwise.
  2584. @item @code{opencl_func} (optional):
  2585. Is a function pointer to the OpenCL implementation of the codelet. Its
  2586. prototype must be:
  2587. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2588. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2589. @code{where} field, it must be non-null otherwise.
  2590. @item @code{gordon_func} (optional):
  2591. This is the index of the Cell SPU implementation within the Gordon library.
  2592. See Gordon documentation for more details on how to register a kernel and
  2593. retrieve its index.
  2594. @item @code{nbuffers}:
  2595. Specifies the number of arguments taken by the codelet. These arguments are
  2596. managed by the DSM and are accessed from the @code{void *buffers[]}
  2597. array. The constant argument passed with the @code{cl_arg} field of the
  2598. @code{starpu_task} structure is not counted in this number. This value should
  2599. not be above @code{STARPU_NMAXBUFS}.
  2600. @item @code{model} (optional):
  2601. This is a pointer to the task duration performance model associated to this
  2602. codelet. This optional field is ignored when set to @code{NULL}. TODO
  2603. @item @code{power_model} (optional):
  2604. This is a pointer to the task power consumption performance model associated
  2605. to this codelet. This optional field is ignored when set to @code{NULL}. TODO
  2606. @end table
  2607. @end table
  2608. @node struct starpu_task
  2609. @subsection @code{struct starpu_task} -- StarPU task structure
  2610. @table @asis
  2611. @item @emph{Description}:
  2612. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2613. processing units managed by StarPU. It instantiates a codelet. It can either be
  2614. allocated dynamically with the @code{starpu_task_create} method, or declared
  2615. statically. In the latter case, the programmer has to zero the
  2616. @code{starpu_task} structure and to fill the different fields properly. The
  2617. indicated default values correspond to the configuration of a task allocated
  2618. with @code{starpu_task_create}.
  2619. @item @emph{Fields}:
  2620. @table @asis
  2621. @item @code{cl}:
  2622. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2623. describes where the kernel should be executed, and supplies the appropriate
  2624. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2625. such empty tasks can be useful for synchronization purposes.
  2626. @item @code{buffers}:
  2627. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2628. different pieces of data accessed by the task, and how they should be accessed.
  2629. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2630. @code{handle} field specifies the handle of the piece of data, and the
  2631. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2632. of entries in this array must be specified in the @code{nbuffers} field of the
  2633. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2634. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2635. option when configuring StarPU.
  2636. @item @code{cl_arg} (optional) (default = NULL):
  2637. This pointer is passed to the codelet through the second argument
  2638. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2639. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2640. argument.
  2641. @item @code{cl_arg_size} (optional, Cell specific):
  2642. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2643. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2644. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2645. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2646. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2647. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2648. codelets.
  2649. @item @code{callback_func} (optional) (default = @code{NULL}):
  2650. This is a function pointer of prototype @code{void (*f)(void *)} which
  2651. specifies a possible callback. If this pointer is non-null, the callback
  2652. function is executed @emph{on the host} after the execution of the task. The
  2653. callback is passed the value contained in the @code{callback_arg} field. No
  2654. callback is executed if the field is set to @code{NULL}.
  2655. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2656. This is the pointer passed to the callback function. This field is ignored if
  2657. the @code{callback_func} is set to @code{NULL}.
  2658. @item @code{use_tag} (optional) (default = 0):
  2659. If set, this flag indicates that the task should be associated with the tag
  2660. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2661. with the task and to express task dependencies easily.
  2662. @item @code{tag_id}:
  2663. This fields contains the tag associated to the task if the @code{use_tag} field
  2664. was set, it is ignored otherwise.
  2665. @item @code{synchronous}:
  2666. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2667. returns only when the task has been executed (or if no worker is able to
  2668. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2669. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2670. This field indicates a level of priority for the task. This is an integer value
  2671. that must be set between the return values of the
  2672. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2673. and that of the @code{starpu_sched_get_max_priority} for the most important
  2674. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2675. are provided for convenience and respectively returns value of
  2676. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2677. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2678. order to allow static task initialization. Scheduling strategies that take
  2679. priorities into account can use this parameter to take better scheduling
  2680. decisions, but the scheduling policy may also ignore it.
  2681. @item @code{execute_on_a_specific_worker} (default = 0):
  2682. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2683. task to the worker specified by the @code{workerid} field.
  2684. @item @code{workerid} (optional):
  2685. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2686. which is the identifier of the worker that should process this task (as
  2687. returned by @code{starpu_worker_get_id}). This field is ignored if
  2688. @code{execute_on_a_specific_worker} field is set to 0.
  2689. @item @code{detach} (optional) (default = 1):
  2690. If this flag is set, it is not possible to synchronize with the task
  2691. by the means of @code{starpu_task_wait} later on. Internal data structures
  2692. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2693. flag is not set.
  2694. @item @code{destroy} (optional) (default = 1):
  2695. If this flag is set, the task structure will automatically be freed, either
  2696. after the execution of the callback if the task is detached, or during
  2697. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2698. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2699. called explicitly. Setting this flag for a statically allocated task structure
  2700. will result in undefined behaviour.
  2701. @item @code{predicted} (output field):
  2702. Predicted duration of the task. This field is only set if the scheduling
  2703. strategy used performance models.
  2704. @end table
  2705. @end table
  2706. @node starpu_task_init
  2707. @subsection @code{starpu_task_init} -- Initialize a Task
  2708. @table @asis
  2709. @item @emph{Description}:
  2710. Initialize a task structure with default values. This function is implicitly
  2711. called by @code{starpu_task_create}. By default, tasks initialized with
  2712. @code{starpu_task_init} must be deinitialized explicitly with
  2713. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2714. constant @code{STARPU_TASK_INITIALIZER}.
  2715. @item @emph{Prototype}:
  2716. @code{void starpu_task_init(struct starpu_task *task);}
  2717. @end table
  2718. @node starpu_task_create
  2719. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2720. @table @asis
  2721. @item @emph{Description}:
  2722. Allocate a task structure and initialize it with default values. Tasks
  2723. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2724. task is terminated. If the destroy flag is explicitly unset, the resources used
  2725. by the task are freed by calling
  2726. @code{starpu_task_destroy}.
  2727. @item @emph{Prototype}:
  2728. @code{struct starpu_task *starpu_task_create(void);}
  2729. @end table
  2730. @node starpu_task_deinit
  2731. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2732. @table @asis
  2733. @item @emph{Description}:
  2734. Release all the structures automatically allocated to execute the task. This is
  2735. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2736. freed. This should be used for statically allocated tasks for instance.
  2737. @item @emph{Prototype}:
  2738. @code{void starpu_task_deinit(struct starpu_task *task);}
  2739. @end table
  2740. @node starpu_task_destroy
  2741. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2742. @table @asis
  2743. @item @emph{Description}:
  2744. Free the resource allocated during @code{starpu_task_create}. This function can be
  2745. called automatically after the execution of a task by setting the
  2746. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2747. Calling this function on a statically allocated task results in an undefined
  2748. behaviour.
  2749. @item @emph{Prototype}:
  2750. @code{void starpu_task_destroy(struct starpu_task *task);}
  2751. @end table
  2752. @node starpu_task_wait
  2753. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2754. @table @asis
  2755. @item @emph{Description}:
  2756. This function blocks until the task has been executed. It is not possible to
  2757. synchronize with a task more than once. It is not possible to wait for
  2758. synchronous or detached tasks.
  2759. @item @emph{Return value}:
  2760. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2761. indicates that the specified task was either synchronous or detached.
  2762. @item @emph{Prototype}:
  2763. @code{int starpu_task_wait(struct starpu_task *task);}
  2764. @end table
  2765. @node starpu_task_submit
  2766. @subsection @code{starpu_task_submit} -- Submit a Task
  2767. @table @asis
  2768. @item @emph{Description}:
  2769. This function submits a task to StarPU. Calling this function does
  2770. not mean that the task will be executed immediately as there can be data or task
  2771. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2772. scheduling this task with respect to such dependencies.
  2773. This function returns immediately if the @code{synchronous} field of the
  2774. @code{starpu_task} structure was set to 0, and block until the termination of
  2775. the task otherwise. It is also possible to synchronize the application with
  2776. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2777. function for instance.
  2778. @item @emph{Return value}:
  2779. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2780. means that there is no worker able to process this task (e.g. there is no GPU
  2781. available and this task is only implemented for CUDA devices).
  2782. @item @emph{Prototype}:
  2783. @code{int starpu_task_submit(struct starpu_task *task);}
  2784. @end table
  2785. @node starpu_task_wait_for_all
  2786. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2787. @table @asis
  2788. @item @emph{Description}:
  2789. This function blocks until all the tasks that were submitted are terminated.
  2790. @item @emph{Prototype}:
  2791. @code{void starpu_task_wait_for_all(void);}
  2792. @end table
  2793. @node starpu_get_current_task
  2794. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2795. @table @asis
  2796. @item @emph{Description}:
  2797. This function returns the task currently executed by the worker, or
  2798. NULL if it is called either from a thread that is not a task or simply
  2799. because there is no task being executed at the moment.
  2800. @item @emph{Prototype}:
  2801. @code{struct starpu_task *starpu_get_current_task(void);}
  2802. @end table
  2803. @node starpu_display_codelet_stats
  2804. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2805. @table @asis
  2806. @item @emph{Description}:
  2807. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2808. @item @emph{Prototype}:
  2809. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2810. @end table
  2811. @c Callbacks : what can we put in callbacks ?
  2812. @node Explicit Dependencies
  2813. @section Explicit Dependencies
  2814. @menu
  2815. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2816. * starpu_tag_t:: Task logical identifier
  2817. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2818. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2819. * starpu_tag_wait:: Block until a Tag is terminated
  2820. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2821. * starpu_tag_remove:: Destroy a Tag
  2822. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2823. @end menu
  2824. @node starpu_task_declare_deps_array
  2825. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2826. @table @asis
  2827. @item @emph{Description}:
  2828. Declare task dependencies between a @code{task} and an array of tasks of length
  2829. @code{ndeps}. This function must be called prior to the submission of the task,
  2830. but it may called after the submission or the execution of the tasks in the
  2831. array provided the tasks are still valid (ie. they were not automatically
  2832. destroyed). Calling this function on a task that was already submitted or with
  2833. an entry of @code{task_array} that is not a valid task anymore results in an
  2834. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2835. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2836. same task, in this case, the dependencies are added. It is possible to have
  2837. redundancy in the task dependencies.
  2838. @item @emph{Prototype}:
  2839. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2840. @end table
  2841. @node starpu_tag_t
  2842. @subsection @code{starpu_tag_t} -- Task logical identifier
  2843. @table @asis
  2844. @item @emph{Description}:
  2845. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2846. dependencies between tasks by the means of those tags. To do so, fill the
  2847. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2848. be arbitrary) and set the @code{use_tag} field to 1.
  2849. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2850. not be started until the tasks which holds the declared dependency tags are
  2851. completed.
  2852. @end table
  2853. @node starpu_tag_declare_deps
  2854. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2855. @table @asis
  2856. @item @emph{Description}:
  2857. Specify the dependencies of the task identified by tag @code{id}. The first
  2858. argument specifies the tag which is configured, the second argument gives the
  2859. number of tag(s) on which @code{id} depends. The following arguments are the
  2860. tags which have to be terminated to unlock the task.
  2861. This function must be called before the associated task is submitted to StarPU
  2862. with @code{starpu_task_submit}.
  2863. @item @emph{Remark}
  2864. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2865. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2866. typically need to be explicitly casted. Using the
  2867. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2868. @item @emph{Prototype}:
  2869. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2870. @item @emph{Example}:
  2871. @cartouche
  2872. @example
  2873. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2874. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2875. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2876. @end example
  2877. @end cartouche
  2878. @end table
  2879. @node starpu_tag_declare_deps_array
  2880. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2881. @table @asis
  2882. @item @emph{Description}:
  2883. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2884. does not take a variable number of arguments but an array of tags of size
  2885. @code{ndeps}.
  2886. @item @emph{Prototype}:
  2887. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2888. @item @emph{Example}:
  2889. @cartouche
  2890. @example
  2891. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2892. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2893. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2894. @end example
  2895. @end cartouche
  2896. @end table
  2897. @node starpu_tag_wait
  2898. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2899. @table @asis
  2900. @item @emph{Description}:
  2901. This function blocks until the task associated to tag @code{id} has been
  2902. executed. This is a blocking call which must therefore not be called within
  2903. tasks or callbacks, but only from the application directly. It is possible to
  2904. synchronize with the same tag multiple times, as long as the
  2905. @code{starpu_tag_remove} function is not called. Note that it is still
  2906. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2907. data structure was freed (e.g. if the @code{destroy} flag of the
  2908. @code{starpu_task} was enabled).
  2909. @item @emph{Prototype}:
  2910. @code{void starpu_tag_wait(starpu_tag_t id);}
  2911. @end table
  2912. @node starpu_tag_wait_array
  2913. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2914. @table @asis
  2915. @item @emph{Description}:
  2916. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2917. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2918. terminated.
  2919. @item @emph{Prototype}:
  2920. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2921. @end table
  2922. @node starpu_tag_remove
  2923. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2924. @table @asis
  2925. @item @emph{Description}:
  2926. This function releases the resources associated to tag @code{id}. It can be
  2927. called once the corresponding task has been executed and when there is
  2928. no other tag that depend on this tag anymore.
  2929. @item @emph{Prototype}:
  2930. @code{void starpu_tag_remove(starpu_tag_t id);}
  2931. @end table
  2932. @node starpu_tag_notify_from_apps
  2933. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2934. @table @asis
  2935. @item @emph{Description}:
  2936. This function explicitly unlocks tag @code{id}. It may be useful in the
  2937. case of applications which execute part of their computation outside StarPU
  2938. tasks (e.g. third-party libraries). It is also provided as a
  2939. convenient tool for the programmer, for instance to entirely construct the task
  2940. DAG before actually giving StarPU the opportunity to execute the tasks.
  2941. @item @emph{Prototype}:
  2942. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2943. @end table
  2944. @node Implicit Data Dependencies
  2945. @section Implicit Data Dependencies
  2946. @menu
  2947. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2948. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2949. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2950. @end menu
  2951. In this section, we describe how StarPU makes it possible to insert implicit
  2952. task dependencies in order to enforce sequential data consistency. When this
  2953. data consistency is enabled on a specific data handle, any data access will
  2954. appear as sequentially consistent from the application. For instance, if the
  2955. application submits two tasks that access the same piece of data in read-only
  2956. mode, and then a third task that access it in write mode, dependencies will be
  2957. added between the two first tasks and the third one. Implicit data dependencies
  2958. are also inserted in the case of data accesses from the application.
  2959. @node starpu_data_set_default_sequential_consistency_flag
  2960. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2961. @table @asis
  2962. @item @emph{Description}:
  2963. Set the default sequential consistency flag. If a non-zero value is passed, a
  2964. sequential data consistency will be enforced for all handles registered after
  2965. this function call, otherwise it is disabled. By default, StarPU enables
  2966. sequential data consistency. It is also possible to select the data consistency
  2967. mode of a specific data handle with the
  2968. @code{starpu_data_set_sequential_consistency_flag} function.
  2969. @item @emph{Prototype}:
  2970. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2971. @end table
  2972. @node starpu_data_get_default_sequential_consistency_flag
  2973. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2974. @table @asis
  2975. @item @emph{Description}:
  2976. This function returns the current default sequential consistency flag.
  2977. @item @emph{Prototype}:
  2978. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2979. @end table
  2980. @node starpu_data_set_sequential_consistency_flag
  2981. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2982. @table @asis
  2983. @item @emph{Description}:
  2984. Select the data consistency mode associated to a data handle. The consistency
  2985. mode set using this function has the priority over the default mode which can
  2986. be set with @code{starpu_data_set_sequential_consistency_flag}.
  2987. @item @emph{Prototype}:
  2988. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  2989. @end table
  2990. @node Performance Model API
  2991. @section Performance Model API
  2992. @menu
  2993. * starpu_load_history_debug::
  2994. * starpu_perfmodel_debugfilepath::
  2995. * starpu_perfmodel_get_arch_name::
  2996. * starpu_force_bus_sampling::
  2997. @end menu
  2998. @node starpu_load_history_debug
  2999. @subsection @code{starpu_load_history_debug}
  3000. @table @asis
  3001. @item @emph{Description}:
  3002. TODO
  3003. @item @emph{Prototype}:
  3004. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3005. @end table
  3006. @node starpu_perfmodel_debugfilepath
  3007. @subsection @code{starpu_perfmodel_debugfilepath}
  3008. @table @asis
  3009. @item @emph{Description}:
  3010. TODO
  3011. @item @emph{Prototype}:
  3012. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3013. @end table
  3014. @node starpu_perfmodel_get_arch_name
  3015. @subsection @code{starpu_perfmodel_get_arch_name}
  3016. @table @asis
  3017. @item @emph{Description}:
  3018. TODO
  3019. @item @emph{Prototype}:
  3020. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3021. @end table
  3022. @node starpu_force_bus_sampling
  3023. @subsection @code{starpu_force_bus_sampling}
  3024. @table @asis
  3025. @item @emph{Description}:
  3026. This forces sampling the bus performance model again.
  3027. @item @emph{Prototype}:
  3028. @code{void starpu_force_bus_sampling(void);}
  3029. @end table
  3030. @node Profiling API
  3031. @section Profiling API
  3032. @menu
  3033. * starpu_profiling_status_set:: starpu_profiling_status_set
  3034. * starpu_profiling_status_get:: starpu_profiling_status_get
  3035. * struct starpu_task_profiling_info:: task profiling information
  3036. * struct starpu_worker_profiling_info:: worker profiling information
  3037. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3038. * struct starpu_bus_profiling_info:: bus profiling information
  3039. * starpu_bus_get_count::
  3040. * starpu_bus_get_id::
  3041. * starpu_bus_get_src::
  3042. * starpu_bus_get_dst::
  3043. * starpu_timing_timespec_delay_us::
  3044. * starpu_timing_timespec_to_us::
  3045. * starpu_bus_profiling_helper_display_summary::
  3046. * starpu_worker_profiling_helper_display_summary::
  3047. @end menu
  3048. @node starpu_profiling_status_set
  3049. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3050. @table @asis
  3051. @item @emph{Description}:
  3052. Thie function sets the profiling status. Profiling is activated by passing
  3053. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3054. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3055. resets all profiling measurements. When profiling is enabled, the
  3056. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3057. to a valid @code{struct starpu_task_profiling_info} structure containing
  3058. information about the execution of the task.
  3059. @item @emph{Return value}:
  3060. Negative return values indicate an error, otherwise the previous status is
  3061. returned.
  3062. @item @emph{Prototype}:
  3063. @code{int starpu_profiling_status_set(int status);}
  3064. @end table
  3065. @node starpu_profiling_status_get
  3066. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3067. @table @asis
  3068. @item @emph{Description}:
  3069. Return the current profiling status or a negative value in case there was an error.
  3070. @item @emph{Prototype}:
  3071. @code{int starpu_profiling_status_get(void);}
  3072. @end table
  3073. @node struct starpu_task_profiling_info
  3074. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3075. @table @asis
  3076. @item @emph{Description}:
  3077. This structure contains information about the execution of a task. It is
  3078. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3079. structure if profiling was enabled.
  3080. @item @emph{Fields}:
  3081. @table @asis
  3082. @item @code{submit_time}:
  3083. Date of task submission (relative to the initialization of StarPU).
  3084. @item @code{start_time}:
  3085. Date of task execution beginning (relative to the initialization of StarPU).
  3086. @item @code{end_time}:
  3087. Date of task execution termination (relative to the initialization of StarPU).
  3088. @item @code{workerid}:
  3089. Identifier of the worker which has executed the task.
  3090. @end table
  3091. @end table
  3092. @node struct starpu_worker_profiling_info
  3093. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3094. @table @asis
  3095. @item @emph{Description}:
  3096. This structure contains the profiling information associated to a worker.
  3097. @item @emph{Fields}:
  3098. @table @asis
  3099. @item @code{start_time}:
  3100. Starting date for the reported profiling measurements.
  3101. @item @code{total_time}:
  3102. Duration of the profiling measurement interval.
  3103. @item @code{executing_time}:
  3104. Time spent by the worker to execute tasks during the profiling measurement interval.
  3105. @item @code{sleeping_time}:
  3106. Time spent idling by the worker during the profiling measurement interval.
  3107. @item @code{executed_tasks}:
  3108. Number of tasks executed by the worker during the profiling measurement interval.
  3109. @end table
  3110. @end table
  3111. @node starpu_worker_get_profiling_info
  3112. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3113. @table @asis
  3114. @item @emph{Description}:
  3115. Get the profiling info associated to the worker identified by @code{workerid},
  3116. and reset the profiling measurements. If the @code{worker_info} argument is
  3117. NULL, only reset the counters associated to worker @code{workerid}.
  3118. @item @emph{Return value}:
  3119. Upon successful completion, this function returns 0. Otherwise, a negative
  3120. value is returned.
  3121. @item @emph{Prototype}:
  3122. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3123. @end table
  3124. @node struct starpu_bus_profiling_info
  3125. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3126. @table @asis
  3127. @item @emph{Description}:
  3128. TODO
  3129. @item @emph{Fields}:
  3130. @table @asis
  3131. @item @code{start_time}:
  3132. TODO
  3133. @item @code{total_time}:
  3134. TODO
  3135. @item @code{transferred_bytes}:
  3136. TODO
  3137. @item @code{transfer_count}:
  3138. TODO
  3139. @end table
  3140. @end table
  3141. @node starpu_bus_get_count
  3142. @subsection @code{starpu_bus_get_count}
  3143. @table @asis
  3144. @item @emph{Description}:
  3145. TODO
  3146. @item @emph{Prototype}:
  3147. @code{int starpu_bus_get_count(void);}
  3148. @end table
  3149. @node starpu_bus_get_id
  3150. @subsection @code{starpu_bus_get_id}
  3151. @table @asis
  3152. @item @emph{Description}:
  3153. TODO
  3154. @item @emph{Prototype}:
  3155. @code{int starpu_bus_get_id(int src, int dst);}
  3156. @end table
  3157. @node starpu_bus_get_src
  3158. @subsection @code{starpu_bus_get_src}
  3159. @table @asis
  3160. @item @emph{Description}:
  3161. TODO
  3162. @item @emph{Prototype}:
  3163. @code{int starpu_bus_get_src(int busid);}
  3164. @end table
  3165. @node starpu_bus_get_dst
  3166. @subsection @code{starpu_bus_get_dst}
  3167. @table @asis
  3168. @item @emph{Description}:
  3169. TODO
  3170. @item @emph{Prototype}:
  3171. @code{int starpu_bus_get_dst(int busid);}
  3172. @end table
  3173. @node starpu_timing_timespec_delay_us
  3174. @subsection @code{starpu_timing_timespec_delay_us}
  3175. @table @asis
  3176. @item @emph{Description}:
  3177. TODO
  3178. @item @emph{Prototype}:
  3179. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3180. @end table
  3181. @node starpu_timing_timespec_to_us
  3182. @subsection @code{starpu_timing_timespec_to_us}
  3183. @table @asis
  3184. @item @emph{Description}:
  3185. TODO
  3186. @item @emph{Prototype}:
  3187. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3188. @end table
  3189. @node starpu_bus_profiling_helper_display_summary
  3190. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3191. @table @asis
  3192. @item @emph{Description}:
  3193. TODO
  3194. @item @emph{Prototype}:
  3195. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3196. @end table
  3197. @node starpu_worker_profiling_helper_display_summary
  3198. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3199. @table @asis
  3200. @item @emph{Description}:
  3201. TODO
  3202. @item @emph{Prototype}:
  3203. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3204. @end table
  3205. @node CUDA extensions
  3206. @section CUDA extensions
  3207. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3208. @menu
  3209. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3210. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3211. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3212. @end menu
  3213. @node starpu_cuda_get_local_stream
  3214. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3215. @table @asis
  3216. @item @emph{Description}:
  3217. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3218. function is only provided for convenience so that programmers can easily use
  3219. asynchronous operations within codelets without having to create a stream by
  3220. hand. Note that the application is not forced to use the stream provided by
  3221. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3222. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3223. the likelihood of having all transfers overlapped.
  3224. @item @emph{Prototype}:
  3225. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3226. @end table
  3227. @node starpu_helper_cublas_init
  3228. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3229. @table @asis
  3230. @item @emph{Description}:
  3231. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3232. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3233. controlled by StarPU. This call blocks until CUBLAS has been properly
  3234. initialized on every device.
  3235. @item @emph{Prototype}:
  3236. @code{void starpu_helper_cublas_init(void);}
  3237. @end table
  3238. @node starpu_helper_cublas_shutdown
  3239. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3240. @table @asis
  3241. @item @emph{Description}:
  3242. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3243. @item @emph{Prototype}:
  3244. @code{void starpu_helper_cublas_shutdown(void);}
  3245. @end table
  3246. @node OpenCL extensions
  3247. @section OpenCL extensions
  3248. @menu
  3249. * Enabling OpenCL:: Enabling OpenCL
  3250. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3251. * Loading OpenCL kernels:: Loading OpenCL kernels
  3252. * OpenCL statistics:: Collecting statistics from OpenCL
  3253. @end menu
  3254. @node Enabling OpenCL
  3255. @subsection Enabling OpenCL
  3256. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3257. enabled by default. To enable OpenCL, you need either to disable CUDA
  3258. when configuring StarPU:
  3259. @example
  3260. % ./configure --disable-cuda
  3261. @end example
  3262. or when running applications:
  3263. @example
  3264. % STARPU_NCUDA=0 ./application
  3265. @end example
  3266. OpenCL will automatically be started on any device not yet used by
  3267. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3268. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3269. so:
  3270. @example
  3271. % STARPU_NCUDA=2 ./application
  3272. @end example
  3273. @node Compiling OpenCL kernels
  3274. @subsection Compiling OpenCL kernels
  3275. Source codes for OpenCL kernels can be stored in a file or in a
  3276. string. StarPU provides functions to build the program executable for
  3277. each available OpenCL device as a @code{cl_program} object. This
  3278. program executable can then be loaded within a specific queue as
  3279. explained in the next section. These are only helpers, Applications
  3280. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3281. use (e.g. different programs on the different OpenCL devices, for
  3282. relocation purpose for instance).
  3283. @menu
  3284. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3285. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3286. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3287. @end menu
  3288. @node starpu_opencl_load_opencl_from_file
  3289. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3290. @table @asis
  3291. @item @emph{Description}:
  3292. TODO
  3293. @item @emph{Prototype}:
  3294. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3295. @end table
  3296. @node starpu_opencl_load_opencl_from_string
  3297. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3298. @table @asis
  3299. @item @emph{Description}:
  3300. TODO
  3301. @item @emph{Prototype}:
  3302. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3303. @end table
  3304. @node starpu_opencl_unload_opencl
  3305. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3306. @table @asis
  3307. @item @emph{Description}:
  3308. TODO
  3309. @item @emph{Prototype}:
  3310. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3311. @end table
  3312. @node Loading OpenCL kernels
  3313. @subsection Loading OpenCL kernels
  3314. @menu
  3315. * starpu_opencl_load_kernel:: Loading a kernel
  3316. * starpu_opencl_relase_kernel:: Releasing a kernel
  3317. @end menu
  3318. @node starpu_opencl_load_kernel
  3319. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. TODO
  3323. @item @emph{Prototype}:
  3324. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3325. }
  3326. @end table
  3327. @node starpu_opencl_relase_kernel
  3328. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3329. @table @asis
  3330. @item @emph{Description}:
  3331. TODO
  3332. @item @emph{Prototype}:
  3333. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3334. @end table
  3335. @node OpenCL statistics
  3336. @subsection OpenCL statistics
  3337. @menu
  3338. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3339. @end menu
  3340. @node starpu_opencl_collect_stats
  3341. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3342. @table @asis
  3343. @item @emph{Description}:
  3344. After termination of the kernels, the OpenCL codelet should call this function
  3345. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3346. collect statistics about the kernel execution (used cycles, consumed power).
  3347. @item @emph{Prototype}:
  3348. @code{int starpu_opencl_collect_stats(cl_event event);}
  3349. @end table
  3350. @node Cell extensions
  3351. @section Cell extensions
  3352. nothing yet.
  3353. @node Miscellaneous helpers
  3354. @section Miscellaneous helpers
  3355. @menu
  3356. * starpu_data_cpy:: Copy a data handle into another data handle
  3357. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3358. @end menu
  3359. @node starpu_data_cpy
  3360. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3361. @table @asis
  3362. @item @emph{Description}:
  3363. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3364. The @code{asynchronous} parameter indicates whether the function should
  3365. block or not. In the case of an asynchronous call, it is possible to
  3366. synchronize with the termination of this operation either by the means of
  3367. implicit dependencies (if enabled) or by calling
  3368. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3369. this callback function is executed after the handle has been copied, and it is
  3370. given the @code{callback_arg} pointer as argument.
  3371. @item @emph{Prototype}:
  3372. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3373. @end table
  3374. @node starpu_execute_on_each_worker
  3375. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3376. @table @asis
  3377. @item @emph{Description}:
  3378. When calling this method, the offloaded function specified by the first argument is
  3379. executed by every StarPU worker that may execute the function.
  3380. The second argument is passed to the offloaded function.
  3381. The last argument specifies on which types of processing units the function
  3382. should be executed. Similarly to the @code{where} field of the
  3383. @code{starpu_codelet} structure, it is possible to specify that the function
  3384. should be executed on every CUDA device and every CPU by passing
  3385. @code{STARPU_CPU|STARPU_CUDA}.
  3386. This function blocks until the function has been executed on every appropriate
  3387. processing units, so that it may not be called from a callback function for
  3388. instance.
  3389. @item @emph{Prototype}:
  3390. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3391. @end table
  3392. @c ---------------------------------------------------------------------
  3393. @c Advanced Topics
  3394. @c ---------------------------------------------------------------------
  3395. @node Advanced Topics
  3396. @chapter Advanced Topics
  3397. @menu
  3398. * Defining a new data interface::
  3399. * Defining a new scheduling policy::
  3400. @end menu
  3401. @node Defining a new data interface
  3402. @section Defining a new data interface
  3403. @menu
  3404. * struct starpu_data_interface_ops_t:: Per-interface methods
  3405. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3406. * An example of data interface:: An example of data interface
  3407. @end menu
  3408. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3409. @node struct starpu_data_interface_ops_t
  3410. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3411. @table @asis
  3412. @item @emph{Description}:
  3413. TODO describe all the different fields
  3414. @end table
  3415. @node struct starpu_data_copy_methods
  3416. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3417. @table @asis
  3418. @item @emph{Description}:
  3419. TODO describe all the different fields
  3420. @end table
  3421. @node An example of data interface
  3422. @subsection An example of data interface
  3423. @table @asis
  3424. TODO
  3425. @end table
  3426. @node Defining a new scheduling policy
  3427. @section Defining a new scheduling policy
  3428. TODO
  3429. A full example showing how to define a new scheduling policy is available in
  3430. the StarPU sources in the directory @code{examples/scheduler/}.
  3431. @menu
  3432. * struct starpu_sched_policy_s::
  3433. * starpu_worker_set_sched_condition::
  3434. * starpu_sched_set_min_priority:: Set the minimum priority level
  3435. * starpu_sched_set_max_priority:: Set the maximum priority level
  3436. * Source code::
  3437. @end menu
  3438. @node struct starpu_sched_policy_s
  3439. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3440. @table @asis
  3441. @item @emph{Description}:
  3442. This structure contains all the methods that implement a scheduling policy. An
  3443. application may specify which scheduling strategy in the @code{sched_policy}
  3444. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3445. function.
  3446. @item @emph{Fields}:
  3447. @table @asis
  3448. @item @code{init_sched}:
  3449. Initialize the scheduling policy.
  3450. @item @code{deinit_sched}:
  3451. Cleanup the scheduling policy.
  3452. @item @code{push_task}:
  3453. Insert a task into the scheduler.
  3454. @item @code{push_prio_task}:
  3455. Insert a priority task into the scheduler.
  3456. @item @code{pop_task}:
  3457. Get a task from the scheduler. The mutex associated to the worker is already
  3458. taken when this method is called.
  3459. @item @code{pop_every_task}:
  3460. Remove all available tasks from the scheduler (tasks are chained by the means
  3461. of the prev and next fields of the starpu_task structure). The mutex associated
  3462. to the worker is already taken when this method is called.
  3463. @item @code{post_exec_hook} (optionnal):
  3464. This method is called every time a task has been executed.
  3465. @item @code{policy_name}:
  3466. Name of the policy (optionnal).
  3467. @item @code{policy_description}:
  3468. Description of the policy (optionnal).
  3469. @end table
  3470. @end table
  3471. @node starpu_worker_set_sched_condition
  3472. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3473. @table @asis
  3474. @item @emph{Description}:
  3475. When there is no available task for a worker, StarPU blocks this worker on a
  3476. condition variable. This function specifies which condition variable (and the
  3477. associated mutex) should be used to block (and to wake up) a worker. Note that
  3478. multiple workers may use the same condition variable. For instance, in the case
  3479. of a scheduling strategy with a single task queue, the same condition variable
  3480. would be used to block and wake up all workers.
  3481. The initialization method of a scheduling strategy (@code{init_sched}) must
  3482. call this function once per worker.
  3483. @item @emph{Prototype}:
  3484. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3485. @end table
  3486. @node starpu_sched_set_min_priority
  3487. @subsection @code{starpu_sched_set_min_priority}
  3488. @table @asis
  3489. @item @emph{Description}:
  3490. Defines the minimum priority level supported by the scheduling policy. The
  3491. default minimum priority level is the same as the default priority level which
  3492. is 0 by convention. The application may access that value by calling the
  3493. @code{starpu_sched_get_min_priority} function. This function should only be
  3494. called from the initialization method of the scheduling policy, and should not
  3495. be used directly from the application.
  3496. @item @emph{Prototype}:
  3497. @code{void starpu_sched_set_min_priority(int min_prio)}
  3498. @end table
  3499. @node starpu_sched_set_max_priority
  3500. @subsection @code{starpu_sched_set_max_priority}
  3501. @table @asis
  3502. @item @emph{Description}:
  3503. Defines the maximum priority level supported by the scheduling policy. The
  3504. default maximum priority level is 1. The application may access that value by
  3505. calling the @code{starpu_sched_get_max_priority} function. This function should
  3506. only be called from the initialization method of the scheduling policy, and
  3507. should not be used directly from the application.
  3508. @item @emph{Prototype}:
  3509. @code{void starpu_sched_set_min_priority(int max_prio)}
  3510. @end table
  3511. @node Source code
  3512. @subsection Source code
  3513. @cartouche
  3514. @smallexample
  3515. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3516. .init_sched = init_dummy_sched,
  3517. .deinit_sched = deinit_dummy_sched,
  3518. .push_task = push_task_dummy,
  3519. .push_prio_task = NULL,
  3520. .pop_task = pop_task_dummy,
  3521. .post_exec_hook = NULL,
  3522. .pop_every_task = NULL,
  3523. .policy_name = "dummy",
  3524. .policy_description = "dummy scheduling strategy"
  3525. @};
  3526. @end smallexample
  3527. @end cartouche
  3528. @c ---------------------------------------------------------------------
  3529. @c Appendices
  3530. @c ---------------------------------------------------------------------
  3531. @c ---------------------------------------------------------------------
  3532. @c Full source code for the 'Scaling a Vector' example
  3533. @c ---------------------------------------------------------------------
  3534. @node Full source code for the 'Scaling a Vector' example
  3535. @appendix Full source code for the 'Scaling a Vector' example
  3536. @menu
  3537. * Main application::
  3538. * CPU Kernel::
  3539. * CUDA Kernel::
  3540. * OpenCL Kernel::
  3541. @end menu
  3542. @node Main application
  3543. @section Main application
  3544. @smallexample
  3545. @include vector_scal_c.texi
  3546. @end smallexample
  3547. @node CPU Kernel
  3548. @section CPU Kernel
  3549. @smallexample
  3550. @include vector_scal_cpu.texi
  3551. @end smallexample
  3552. @node CUDA Kernel
  3553. @section CUDA Kernel
  3554. @smallexample
  3555. @include vector_scal_cuda.texi
  3556. @end smallexample
  3557. @node OpenCL Kernel
  3558. @section OpenCL Kernel
  3559. @menu
  3560. * Invoking the kernel::
  3561. * Source of the kernel::
  3562. @end menu
  3563. @node Invoking the kernel
  3564. @subsection Invoking the kernel
  3565. @smallexample
  3566. @include vector_scal_opencl.texi
  3567. @end smallexample
  3568. @node Source of the kernel
  3569. @subsection Source of the kernel
  3570. @smallexample
  3571. @include vector_scal_opencl_codelet.texi
  3572. @end smallexample
  3573. @bye