profiling.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2013 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <starpu.h>
  18. #include <starpu_profiling.h>
  19. #include <profiling/profiling.h>
  20. #include <core/workers.h>
  21. #include <common/config.h>
  22. #include <common/utils.h>
  23. #include <common/timing.h>
  24. #include <common/fxt.h>
  25. #include <errno.h>
  26. static struct starpu_profiling_worker_info worker_info[STARPU_NMAXWORKERS];
  27. static starpu_pthread_mutex_t worker_info_mutex[STARPU_NMAXWORKERS];
  28. /* In case the worker is still sleeping when the user request profiling info,
  29. * we need to account for the time elasped while sleeping. */
  30. static unsigned worker_registered_sleeping_start[STARPU_NMAXWORKERS];
  31. static struct timespec sleeping_start_date[STARPU_NMAXWORKERS];
  32. static unsigned worker_registered_executing_start[STARPU_NMAXWORKERS];
  33. static struct timespec executing_start_date[STARPU_NMAXWORKERS];
  34. /* Store the busid of the different (src, dst) pairs. busid_matrix[src][dst]
  35. * contains the busid of (src, dst) or -1 if the bus was not registered. */
  36. struct node_pair
  37. {
  38. int src;
  39. int dst;
  40. struct starpu_profiling_bus_info *bus_info;
  41. };
  42. static int busid_matrix[STARPU_MAXNODES][STARPU_MAXNODES];
  43. static struct starpu_profiling_bus_info bus_profiling_info[STARPU_MAXNODES][STARPU_MAXNODES];
  44. static struct node_pair busid_to_node_pair[STARPU_MAXNODES*STARPU_MAXNODES];
  45. static unsigned busid_cnt = 0;
  46. static void _starpu_bus_reset_profiling_info(struct starpu_profiling_bus_info *bus_info);
  47. /*
  48. * Global control of profiling
  49. */
  50. /* Disabled by default, unless simulating */
  51. int _starpu_profiling =
  52. #ifdef STARPU_SIMGRID
  53. 1
  54. #else
  55. 0
  56. #endif
  57. ;
  58. int starpu_profiling_status_set(int status)
  59. {
  60. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  61. int prev_value = _starpu_profiling;
  62. _starpu_profiling = status;
  63. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  64. _STARPU_TRACE_SET_PROFILING(status);
  65. /* If we enable profiling, we reset the counters. */
  66. if (status == STARPU_PROFILING_ENABLE)
  67. {
  68. int worker;
  69. for (worker = 0; worker < STARPU_NMAXWORKERS; worker++)
  70. _starpu_worker_reset_profiling_info(worker);
  71. int busid;
  72. int bus_cnt = starpu_bus_get_count();
  73. for (busid = 0; busid < bus_cnt; busid++)
  74. {
  75. struct starpu_profiling_bus_info *bus_info;
  76. bus_info = busid_to_node_pair[busid].bus_info;
  77. _starpu_bus_reset_profiling_info(bus_info);
  78. }
  79. }
  80. return prev_value;
  81. }
  82. void _starpu_profiling_init(void)
  83. {
  84. int worker;
  85. const char *env;
  86. for (worker = 0; worker < STARPU_NMAXWORKERS; worker++)
  87. {
  88. STARPU_PTHREAD_MUTEX_INIT(&worker_info_mutex[worker], NULL);
  89. _starpu_worker_reset_profiling_info(worker);
  90. }
  91. if ((env = getenv("STARPU_PROFILING")) && atoi(env))
  92. {
  93. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  94. _starpu_profiling = STARPU_PROFILING_ENABLE;
  95. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  96. }
  97. }
  98. void _starpu_profiling_terminate(void)
  99. {
  100. }
  101. /*
  102. * Task profiling
  103. */
  104. struct starpu_profiling_task_info *_starpu_allocate_profiling_info_if_needed(struct starpu_task *task)
  105. {
  106. struct starpu_profiling_task_info *info = NULL;
  107. /* If we are benchmarking, we need room for the power consumption */
  108. if (starpu_profiling_status_get() || (task->cl && task->cl->power_model && (task->cl->power_model->benchmarking || _starpu_get_calibrate_flag())))
  109. {
  110. info = (struct starpu_profiling_task_info *) calloc(1, sizeof(struct starpu_profiling_task_info));
  111. STARPU_ASSERT(info);
  112. }
  113. return info;
  114. }
  115. /*
  116. * Worker profiling
  117. */
  118. static void _starpu_worker_reset_profiling_info_with_lock(int workerid)
  119. {
  120. _starpu_clock_gettime(&worker_info[workerid].start_time);
  121. /* This is computed in a lazy fashion when the application queries
  122. * profiling info. */
  123. starpu_timespec_clear(&worker_info[workerid].total_time);
  124. starpu_timespec_clear(&worker_info[workerid].executing_time);
  125. starpu_timespec_clear(&worker_info[workerid].sleeping_time);
  126. worker_info[workerid].executed_tasks = 0;
  127. worker_info[workerid].used_cycles = 0;
  128. worker_info[workerid].stall_cycles = 0;
  129. worker_info[workerid].power_consumed = 0;
  130. /* We detect if the worker is already sleeping or doing some
  131. * computation */
  132. enum _starpu_worker_status status = _starpu_worker_get_status(workerid);
  133. if (status == STATUS_SLEEPING)
  134. {
  135. worker_registered_sleeping_start[workerid] = 1;
  136. _starpu_clock_gettime(&sleeping_start_date[workerid]);
  137. }
  138. else
  139. {
  140. worker_registered_sleeping_start[workerid] = 0;
  141. }
  142. if (status == STATUS_EXECUTING)
  143. {
  144. worker_registered_executing_start[workerid] = 1;
  145. _starpu_clock_gettime(&executing_start_date[workerid]);
  146. }
  147. else
  148. {
  149. worker_registered_executing_start[workerid] = 0;
  150. }
  151. }
  152. void _starpu_worker_reset_profiling_info(int workerid)
  153. {
  154. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  155. _starpu_worker_reset_profiling_info_with_lock(workerid);
  156. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  157. }
  158. void _starpu_worker_restart_sleeping(int workerid)
  159. {
  160. if (starpu_profiling_status_get())
  161. {
  162. struct timespec sleep_start_time;
  163. _starpu_clock_gettime(&sleep_start_time);
  164. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  165. worker_registered_sleeping_start[workerid] = 1;
  166. memcpy(&sleeping_start_date[workerid], &sleep_start_time, sizeof(struct timespec));
  167. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  168. }
  169. }
  170. void _starpu_worker_stop_sleeping(int workerid)
  171. {
  172. if (starpu_profiling_status_get())
  173. {
  174. struct timespec *sleeping_start, sleep_end_time;
  175. _starpu_clock_gettime(&sleep_end_time);
  176. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  177. sleeping_start = &sleeping_start_date[workerid];
  178. /* Perhaps that profiling was enabled while the worker was
  179. * already blocked, so we don't measure (end - start), but
  180. * (end - max(start,worker_start)) where worker_start is the
  181. * date of the previous profiling info reset on the worker */
  182. struct timespec *worker_start = &worker_info[workerid].start_time;
  183. if (starpu_timespec_cmp(sleeping_start, worker_start, <))
  184. {
  185. /* sleeping_start < worker_start */
  186. sleeping_start = worker_start;
  187. }
  188. struct timespec sleeping_time;
  189. starpu_timespec_sub(&sleep_end_time, sleeping_start, &sleeping_time);
  190. starpu_timespec_accumulate(&worker_info[workerid].sleeping_time, &sleeping_time);
  191. worker_registered_sleeping_start[workerid] = 0;
  192. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  193. }
  194. }
  195. void _starpu_worker_register_executing_start_date(int workerid, struct timespec *executing_start)
  196. {
  197. if (starpu_profiling_status_get())
  198. {
  199. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  200. worker_registered_executing_start[workerid] = 1;
  201. memcpy(&executing_start_date[workerid], executing_start, sizeof(struct timespec));
  202. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  203. }
  204. }
  205. void _starpu_worker_update_profiling_info_executing(int workerid, struct timespec *executing_time, int executed_tasks, uint64_t used_cycles, uint64_t stall_cycles, double power_consumed)
  206. {
  207. if (starpu_profiling_status_get())
  208. {
  209. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  210. if (executing_time)
  211. starpu_timespec_accumulate(&worker_info[workerid].executing_time, executing_time);
  212. worker_info[workerid].used_cycles += used_cycles;
  213. worker_info[workerid].stall_cycles += stall_cycles;
  214. worker_info[workerid].power_consumed += power_consumed;
  215. worker_info[workerid].executed_tasks += executed_tasks;
  216. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  217. }
  218. else /* Not thread safe, shouldn't be too much a problem */
  219. worker_info[workerid].executed_tasks += executed_tasks;
  220. }
  221. int starpu_profiling_worker_get_info(int workerid, struct starpu_profiling_worker_info *info)
  222. {
  223. if (!starpu_profiling_status_get())
  224. {
  225. /* Not thread safe, shouldn't be too much a problem */
  226. info->executed_tasks = worker_info[workerid].executed_tasks;
  227. }
  228. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  229. if (info)
  230. {
  231. /* The total time is computed in a lazy fashion */
  232. struct timespec now;
  233. _starpu_clock_gettime(&now);
  234. /* In case some worker is currently sleeping, we take into
  235. * account the time spent since it registered. */
  236. if (worker_registered_sleeping_start[workerid])
  237. {
  238. struct timespec sleeping_time;
  239. starpu_timespec_sub(&now, &sleeping_start_date[workerid], &sleeping_time);
  240. starpu_timespec_accumulate(&worker_info[workerid].sleeping_time, &sleeping_time);
  241. }
  242. if (worker_registered_executing_start[workerid])
  243. {
  244. struct timespec executing_time;
  245. starpu_timespec_sub(&now, &executing_start_date[workerid], &executing_time);
  246. starpu_timespec_accumulate(&worker_info[workerid].executing_time, &executing_time);
  247. }
  248. /* total_time = now - start_time */
  249. starpu_timespec_sub(&now, &worker_info[workerid].start_time,
  250. &worker_info[workerid].total_time);
  251. memcpy(info, &worker_info[workerid], sizeof(struct starpu_profiling_worker_info));
  252. }
  253. _starpu_worker_reset_profiling_info_with_lock(workerid);
  254. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  255. return 0;
  256. }
  257. /* When did the task reach the scheduler ? */
  258. void _starpu_profiling_set_task_push_start_time(struct starpu_task *task)
  259. {
  260. if (!starpu_profiling_status_get())
  261. return;
  262. struct starpu_profiling_task_info *profiling_info;
  263. profiling_info = task->profiling_info;
  264. if (profiling_info)
  265. _starpu_clock_gettime(&profiling_info->push_start_time);
  266. }
  267. void _starpu_profiling_set_task_push_end_time(struct starpu_task *task)
  268. {
  269. if (!starpu_profiling_status_get())
  270. return;
  271. struct starpu_profiling_task_info *profiling_info;
  272. profiling_info = task->profiling_info;
  273. if (profiling_info)
  274. _starpu_clock_gettime(&profiling_info->push_end_time);
  275. }
  276. /*
  277. * Bus profiling
  278. */
  279. void _starpu_initialize_busid_matrix(void)
  280. {
  281. int i, j;
  282. for (j = 0; j < STARPU_MAXNODES; j++)
  283. for (i = 0; i < STARPU_MAXNODES; i++)
  284. busid_matrix[i][j] = -1;
  285. busid_cnt = 0;
  286. }
  287. static void _starpu_bus_reset_profiling_info(struct starpu_profiling_bus_info *bus_info)
  288. {
  289. _starpu_clock_gettime(&bus_info->start_time);
  290. bus_info->transferred_bytes = 0;
  291. bus_info->transfer_count = 0;
  292. }
  293. int _starpu_register_bus(int src_node, int dst_node)
  294. {
  295. if (busid_matrix[src_node][dst_node] != -1)
  296. return -EBUSY;
  297. int busid = STARPU_ATOMIC_ADD(&busid_cnt, 1) - 1;
  298. busid_matrix[src_node][dst_node] = busid;
  299. busid_to_node_pair[busid].src = src_node;
  300. busid_to_node_pair[busid].dst = dst_node;
  301. busid_to_node_pair[busid].bus_info = &bus_profiling_info[src_node][dst_node];
  302. _starpu_bus_reset_profiling_info(&bus_profiling_info[src_node][dst_node]);
  303. return busid;
  304. }
  305. int starpu_bus_get_count(void)
  306. {
  307. return busid_cnt;
  308. }
  309. int starpu_bus_get_id(int src, int dst)
  310. {
  311. return busid_matrix[src][dst];
  312. }
  313. int starpu_bus_get_src(int busid)
  314. {
  315. return busid_to_node_pair[busid].src;
  316. }
  317. int starpu_bus_get_dst(int busid)
  318. {
  319. return busid_to_node_pair[busid].dst;
  320. }
  321. int starpu_bus_get_profiling_info(int busid, struct starpu_profiling_bus_info *bus_info)
  322. {
  323. int src_node = busid_to_node_pair[busid].src;
  324. int dst_node = busid_to_node_pair[busid].dst;
  325. /* XXX protect all this method with a mutex */
  326. if (bus_info)
  327. {
  328. struct timespec now;
  329. _starpu_clock_gettime(&now);
  330. /* total_time = now - start_time */
  331. starpu_timespec_sub(&now, &bus_profiling_info[src_node][dst_node].start_time,
  332. &bus_profiling_info[src_node][dst_node].total_time);
  333. memcpy(bus_info, &bus_profiling_info[src_node][dst_node], sizeof(struct starpu_profiling_bus_info));
  334. }
  335. _starpu_bus_reset_profiling_info(&bus_profiling_info[src_node][dst_node]);
  336. return 0;
  337. }
  338. void _starpu_bus_update_profiling_info(int src_node, int dst_node, size_t size)
  339. {
  340. bus_profiling_info[src_node][dst_node].transferred_bytes += size;
  341. bus_profiling_info[src_node][dst_node].transfer_count++;
  342. // fprintf(stderr, "PROFILE %d -> %d : %d (cnt %d)\n", src_node, dst_node, size, bus_profiling_info[src_node][dst_node].transfer_count);
  343. }
  344. #undef starpu_profiling_status_get
  345. int starpu_profiling_status_get(void)
  346. {
  347. int ret;
  348. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  349. ret = _starpu_profiling;
  350. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  351. return ret;
  352. }