| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626 | 
							- /* dtgsja.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b13 = 0.;
 
- static doublereal c_b14 = 1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b43 = -1.;
 
- /* Subroutine */ int dtgsja_(char *jobu, char *jobv, char *jobq, integer *m, 
 
- 	integer *p, integer *n, integer *k, integer *l, doublereal *a, 
 
- 	integer *lda, doublereal *b, integer *ldb, doublereal *tola, 
 
- 	doublereal *tolb, doublereal *alpha, doublereal *beta, doublereal *u, 
 
- 	integer *ldu, doublereal *v, integer *ldv, doublereal *q, integer *
 
- 	ldq, doublereal *work, integer *ncycle, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 
 
- 	    u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal a1, a2, a3, b1, b2, b3, csq, csu, csv, snq, rwk, snu, snv;
 
-     extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     doublereal gamma;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical initq, initu, initv, wantq, upper;
 
-     doublereal error, ssmin;
 
-     logical wantu, wantv;
 
-     extern /* Subroutine */ int dlags2_(logical *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *), dlapll_(integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     integer kcycle;
 
-     extern /* Subroutine */ int dlartg_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *), dlaset_(char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *), xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTGSJA computes the generalized singular value decomposition (GSVD) */
 
- /*  of two real upper triangular (or trapezoidal) matrices A and B. */
 
- /*  On entry, it is assumed that matrices A and B have the following */
 
- /*  forms, which may be obtained by the preprocessing subroutine DGGSVP */
 
- /*  from a general M-by-N matrix A and P-by-N matrix B: */
 
- /*               N-K-L  K    L */
 
- /*     A =    K ( 0    A12  A13 ) if M-K-L >= 0; */
 
- /*            L ( 0     0   A23 ) */
 
- /*        M-K-L ( 0     0    0  ) */
 
- /*             N-K-L  K    L */
 
- /*     A =  K ( 0    A12  A13 ) if M-K-L < 0; */
 
- /*        M-K ( 0     0   A23 ) */
 
- /*             N-K-L  K    L */
 
- /*     B =  L ( 0     0   B13 ) */
 
- /*        P-L ( 0     0    0  ) */
 
- /*  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
 
- /*  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
 
- /*  otherwise A23 is (M-K)-by-L upper trapezoidal. */
 
- /*  On exit, */
 
- /*              U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ), */
 
- /*  where U, V and Q are orthogonal matrices, Z' denotes the transpose */
 
- /*  of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are */
 
- /*  ``diagonal'' matrices, which are of the following structures: */
 
- /*  If M-K-L >= 0, */
 
- /*                      K  L */
 
- /*         D1 =     K ( I  0 ) */
 
- /*                  L ( 0  C ) */
 
- /*              M-K-L ( 0  0 ) */
 
- /*                    K  L */
 
- /*         D2 = L   ( 0  S ) */
 
- /*              P-L ( 0  0 ) */
 
- /*                 N-K-L  K    L */
 
- /*    ( 0 R ) = K (  0   R11  R12 ) K */
 
- /*              L (  0    0   R22 ) L */
 
- /*  where */
 
- /*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
 
- /*    S = diag( BETA(K+1),  ... , BETA(K+L) ), */
 
- /*    C**2 + S**2 = I. */
 
- /*    R is stored in A(1:K+L,N-K-L+1:N) on exit. */
 
- /*  If M-K-L < 0, */
 
- /*                 K M-K K+L-M */
 
- /*      D1 =   K ( I  0    0   ) */
 
- /*           M-K ( 0  C    0   ) */
 
- /*                   K M-K K+L-M */
 
- /*      D2 =   M-K ( 0  S    0   ) */
 
- /*           K+L-M ( 0  0    I   ) */
 
- /*             P-L ( 0  0    0   ) */
 
- /*                 N-K-L  K   M-K  K+L-M */
 
- /* ( 0 R ) =    K ( 0    R11  R12  R13  ) */
 
- /*            M-K ( 0     0   R22  R23  ) */
 
- /*          K+L-M ( 0     0    0   R33  ) */
 
- /*  where */
 
- /*  C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
 
- /*  S = diag( BETA(K+1),  ... , BETA(M) ), */
 
- /*  C**2 + S**2 = I. */
 
- /*  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
 
- /*      (  0  R22 R23 ) */
 
- /*  in B(M-K+1:L,N+M-K-L+1:N) on exit. */
 
- /*  The computation of the orthogonal transformation matrices U, V or Q */
 
- /*  is optional.  These matrices may either be formed explicitly, or they */
 
- /*  may be postmultiplied into input matrices U1, V1, or Q1. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBU    (input) CHARACTER*1 */
 
- /*          = 'U':  U must contain an orthogonal matrix U1 on entry, and */
 
- /*                  the product U1*U is returned; */
 
- /*          = 'I':  U is initialized to the unit matrix, and the */
 
- /*                  orthogonal matrix U is returned; */
 
- /*          = 'N':  U is not computed. */
 
- /*  JOBV    (input) CHARACTER*1 */
 
- /*          = 'V':  V must contain an orthogonal matrix V1 on entry, and */
 
- /*                  the product V1*V is returned; */
 
- /*          = 'I':  V is initialized to the unit matrix, and the */
 
- /*                  orthogonal matrix V is returned; */
 
- /*          = 'N':  V is not computed. */
 
- /*  JOBQ    (input) CHARACTER*1 */
 
- /*          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and */
 
- /*                  the product Q1*Q is returned; */
 
- /*          = 'I':  Q is initialized to the unit matrix, and the */
 
- /*                  orthogonal matrix Q is returned; */
 
- /*          = 'N':  Q is not computed. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of rows of the matrix B.  P >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrices A and B.  N >= 0. */
 
- /*  K       (input) INTEGER */
 
- /*  L       (input) INTEGER */
 
- /*          K and L specify the subblocks in the input matrices A and B: */
 
- /*          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
 
- /*          of A and B, whose GSVD is going to be computed by DTGSJA. */
 
- /*          See Further details. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
 
- /*          matrix R or part of R.  See Purpose for details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*          On entry, the P-by-N matrix B. */
 
- /*          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
 
- /*          a part of R.  See Purpose for details. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,P). */
 
- /*  TOLA    (input) DOUBLE PRECISION */
 
- /*  TOLB    (input) DOUBLE PRECISION */
 
- /*          TOLA and TOLB are the convergence criteria for the Jacobi- */
 
- /*          Kogbetliantz iteration procedure. Generally, they are the */
 
- /*          same as used in the preprocessing step, say */
 
- /*              TOLA = max(M,N)*norm(A)*MAZHEPS, */
 
- /*              TOLB = max(P,N)*norm(B)*MAZHEPS. */
 
- /*  ALPHA   (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, ALPHA and BETA contain the generalized singular */
 
- /*          value pairs of A and B; */
 
- /*            ALPHA(1:K) = 1, */
 
- /*            BETA(1:K)  = 0, */
 
- /*          and if M-K-L >= 0, */
 
- /*            ALPHA(K+1:K+L) = diag(C), */
 
- /*            BETA(K+1:K+L)  = diag(S), */
 
- /*          or if M-K-L < 0, */
 
- /*            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
 
- /*            BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
 
- /*          Furthermore, if K+L < N, */
 
- /*            ALPHA(K+L+1:N) = 0 and */
 
- /*            BETA(K+L+1:N)  = 0. */
 
- /*  U       (input/output) DOUBLE PRECISION array, dimension (LDU,M) */
 
- /*          On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
 
- /*          the orthogonal matrix returned by DGGSVP). */
 
- /*          On exit, */
 
- /*          if JOBU = 'I', U contains the orthogonal matrix U; */
 
- /*          if JOBU = 'U', U contains the product U1*U. */
 
- /*          If JOBU = 'N', U is not referenced. */
 
- /*  LDU     (input) INTEGER */
 
- /*          The leading dimension of the array U. LDU >= max(1,M) if */
 
- /*          JOBU = 'U'; LDU >= 1 otherwise. */
 
- /*  V       (input/output) DOUBLE PRECISION array, dimension (LDV,P) */
 
- /*          On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
 
- /*          the orthogonal matrix returned by DGGSVP). */
 
- /*          On exit, */
 
- /*          if JOBV = 'I', V contains the orthogonal matrix V; */
 
- /*          if JOBV = 'V', V contains the product V1*V. */
 
- /*          If JOBV = 'N', V is not referenced. */
 
- /*  LDV     (input) INTEGER */
 
- /*          The leading dimension of the array V. LDV >= max(1,P) if */
 
- /*          JOBV = 'V'; LDV >= 1 otherwise. */
 
- /*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
 
- /*          the orthogonal matrix returned by DGGSVP). */
 
- /*          On exit, */
 
- /*          if JOBQ = 'I', Q contains the orthogonal matrix Q; */
 
- /*          if JOBQ = 'Q', Q contains the product Q1*Q. */
 
- /*          If JOBQ = 'N', Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. LDQ >= max(1,N) if */
 
- /*          JOBQ = 'Q'; LDQ >= 1 otherwise. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*  NCYCLE  (output) INTEGER */
 
- /*          The number of cycles required for convergence. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          = 1:  the procedure does not converge after MAXIT cycles. */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  MAXIT   INTEGER */
 
- /*          MAXIT specifies the total loops that the iterative procedure */
 
- /*          may take. If after MAXIT cycles, the routine fails to */
 
- /*          converge, we return INFO = 1. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
 
- /*  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
 
- /*  matrix B13 to the form: */
 
- /*           U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1, */
 
- /*  where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose */
 
- /*  of Z.  C1 and S1 are diagonal matrices satisfying */
 
- /*                C1**2 + S1**2 = I, */
 
- /*  and R1 is an L-by-L nonsingular upper triangular matrix. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alpha;
 
-     --beta;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --work;
 
-     /* Function Body */
 
-     initu = lsame_(jobu, "I");
 
-     wantu = initu || lsame_(jobu, "U");
 
-     initv = lsame_(jobv, "I");
 
-     wantv = initv || lsame_(jobv, "V");
 
-     initq = lsame_(jobq, "I");
 
-     wantq = initq || lsame_(jobq, "Q");
 
-     *info = 0;
 
-     if (! (initu || wantu || lsame_(jobu, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (initv || wantv || lsame_(jobv, "N"))) 
 
- 	    {
 
- 	*info = -2;
 
-     } else if (! (initq || wantq || lsame_(jobq, "N"))) 
 
- 	    {
 
- 	*info = -3;
 
-     } else if (*m < 0) {
 
- 	*info = -4;
 
-     } else if (*p < 0) {
 
- 	*info = -5;
 
-     } else if (*n < 0) {
 
- 	*info = -6;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -10;
 
-     } else if (*ldb < max(1,*p)) {
 
- 	*info = -12;
 
-     } else if (*ldu < 1 || wantu && *ldu < *m) {
 
- 	*info = -18;
 
-     } else if (*ldv < 1 || wantv && *ldv < *p) {
 
- 	*info = -20;
 
-     } else if (*ldq < 1 || wantq && *ldq < *n) {
 
- 	*info = -22;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTGSJA", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Initialize U, V and Q, if necessary */
 
-     if (initu) {
 
- 	dlaset_("Full", m, m, &c_b13, &c_b14, &u[u_offset], ldu);
 
-     }
 
-     if (initv) {
 
- 	dlaset_("Full", p, p, &c_b13, &c_b14, &v[v_offset], ldv);
 
-     }
 
-     if (initq) {
 
- 	dlaset_("Full", n, n, &c_b13, &c_b14, &q[q_offset], ldq);
 
-     }
 
- /*     Loop until convergence */
 
-     upper = FALSE_;
 
-     for (kcycle = 1; kcycle <= 40; ++kcycle) {
 
- 	upper = ! upper;
 
- 	i__1 = *l - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    i__2 = *l;
 
- 	    for (j = i__ + 1; j <= i__2; ++j) {
 
- 		a1 = 0.;
 
- 		a2 = 0.;
 
- 		a3 = 0.;
 
- 		if (*k + i__ <= *m) {
 
- 		    a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
 
- 		}
 
- 		if (*k + j <= *m) {
 
- 		    a3 = a[*k + j + (*n - *l + j) * a_dim1];
 
- 		}
 
- 		b1 = b[i__ + (*n - *l + i__) * b_dim1];
 
- 		b3 = b[j + (*n - *l + j) * b_dim1];
 
- 		if (upper) {
 
- 		    if (*k + i__ <= *m) {
 
- 			a2 = a[*k + i__ + (*n - *l + j) * a_dim1];
 
- 		    }
 
- 		    b2 = b[i__ + (*n - *l + j) * b_dim1];
 
- 		} else {
 
- 		    if (*k + j <= *m) {
 
- 			a2 = a[*k + j + (*n - *l + i__) * a_dim1];
 
- 		    }
 
- 		    b2 = b[j + (*n - *l + i__) * b_dim1];
 
- 		}
 
- 		dlags2_(&upper, &a1, &a2, &a3, &b1, &b2, &b3, &csu, &snu, &
 
- 			csv, &snv, &csq, &snq);
 
- /*              Update (K+I)-th and (K+J)-th rows of matrix A: U'*A */
 
- 		if (*k + j <= *m) {
 
- 		    drot_(l, &a[*k + j + (*n - *l + 1) * a_dim1], lda, &a[*k 
 
- 			    + i__ + (*n - *l + 1) * a_dim1], lda, &csu, &snu);
 
- 		}
 
- /*              Update I-th and J-th rows of matrix B: V'*B */
 
- 		drot_(l, &b[j + (*n - *l + 1) * b_dim1], ldb, &b[i__ + (*n - *
 
- 			l + 1) * b_dim1], ldb, &csv, &snv);
 
- /*              Update (N-L+I)-th and (N-L+J)-th columns of matrices */
 
- /*              A and B: A*Q and B*Q */
 
- /* Computing MIN */
 
- 		i__4 = *k + *l;
 
- 		i__3 = min(i__4,*m);
 
- 		drot_(&i__3, &a[(*n - *l + j) * a_dim1 + 1], &c__1, &a[(*n - *
 
- 			l + i__) * a_dim1 + 1], &c__1, &csq, &snq);
 
- 		drot_(l, &b[(*n - *l + j) * b_dim1 + 1], &c__1, &b[(*n - *l + 
 
- 			i__) * b_dim1 + 1], &c__1, &csq, &snq);
 
- 		if (upper) {
 
- 		    if (*k + i__ <= *m) {
 
- 			a[*k + i__ + (*n - *l + j) * a_dim1] = 0.;
 
- 		    }
 
- 		    b[i__ + (*n - *l + j) * b_dim1] = 0.;
 
- 		} else {
 
- 		    if (*k + j <= *m) {
 
- 			a[*k + j + (*n - *l + i__) * a_dim1] = 0.;
 
- 		    }
 
- 		    b[j + (*n - *l + i__) * b_dim1] = 0.;
 
- 		}
 
- /*              Update orthogonal matrices U, V, Q, if desired. */
 
- 		if (wantu && *k + j <= *m) {
 
- 		    drot_(m, &u[(*k + j) * u_dim1 + 1], &c__1, &u[(*k + i__) *
 
- 			     u_dim1 + 1], &c__1, &csu, &snu);
 
- 		}
 
- 		if (wantv) {
 
- 		    drot_(p, &v[j * v_dim1 + 1], &c__1, &v[i__ * v_dim1 + 1], 
 
- 			    &c__1, &csv, &snv);
 
- 		}
 
- 		if (wantq) {
 
- 		    drot_(n, &q[(*n - *l + j) * q_dim1 + 1], &c__1, &q[(*n - *
 
- 			    l + i__) * q_dim1 + 1], &c__1, &csq, &snq);
 
- 		}
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
- 	if (! upper) {
 
- /*           The matrices A13 and B13 were lower triangular at the start */
 
- /*           of the cycle, and are now upper triangular. */
 
- /*           Convergence test: test the parallelism of the corresponding */
 
- /*           rows of A and B. */
 
- 	    error = 0.;
 
- /* Computing MIN */
 
- 	    i__2 = *l, i__3 = *m - *k;
 
- 	    i__1 = min(i__2,i__3);
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		i__2 = *l - i__ + 1;
 
- 		dcopy_(&i__2, &a[*k + i__ + (*n - *l + i__) * a_dim1], lda, &
 
- 			work[1], &c__1);
 
- 		i__2 = *l - i__ + 1;
 
- 		dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &work[*
 
- 			l + 1], &c__1);
 
- 		i__2 = *l - i__ + 1;
 
- 		dlapll_(&i__2, &work[1], &c__1, &work[*l + 1], &c__1, &ssmin);
 
- 		error = max(error,ssmin);
 
- /* L30: */
 
- 	    }
 
- 	    if (abs(error) <= min(*tola,*tolb)) {
 
- 		goto L50;
 
- 	    }
 
- 	}
 
- /*        End of cycle loop */
 
- /* L40: */
 
-     }
 
- /*     The algorithm has not converged after MAXIT cycles. */
 
-     *info = 1;
 
-     goto L100;
 
- L50:
 
- /*     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged. */
 
- /*     Compute the generalized singular value pairs (ALPHA, BETA), and */
 
- /*     set the triangular matrix R to array A. */
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	alpha[i__] = 1.;
 
- 	beta[i__] = 0.;
 
- /* L60: */
 
-     }
 
- /* Computing MIN */
 
-     i__2 = *l, i__3 = *m - *k;
 
-     i__1 = min(i__2,i__3);
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
 
- 	b1 = b[i__ + (*n - *l + i__) * b_dim1];
 
- 	if (a1 != 0.) {
 
- 	    gamma = b1 / a1;
 
- /*           change sign if necessary */
 
- 	    if (gamma < 0.) {
 
- 		i__2 = *l - i__ + 1;
 
- 		dscal_(&i__2, &c_b43, &b[i__ + (*n - *l + i__) * b_dim1], ldb)
 
- 			;
 
- 		if (wantv) {
 
- 		    dscal_(p, &c_b43, &v[i__ * v_dim1 + 1], &c__1);
 
- 		}
 
- 	    }
 
- 	    d__1 = abs(gamma);
 
- 	    dlartg_(&d__1, &c_b14, &beta[*k + i__], &alpha[*k + i__], &rwk);
 
- 	    if (alpha[*k + i__] >= beta[*k + i__]) {
 
- 		i__2 = *l - i__ + 1;
 
- 		d__1 = 1. / alpha[*k + i__];
 
- 		dscal_(&i__2, &d__1, &a[*k + i__ + (*n - *l + i__) * a_dim1], 
 
- 			lda);
 
- 	    } else {
 
- 		i__2 = *l - i__ + 1;
 
- 		d__1 = 1. / beta[*k + i__];
 
- 		dscal_(&i__2, &d__1, &b[i__ + (*n - *l + i__) * b_dim1], ldb);
 
- 		i__2 = *l - i__ + 1;
 
- 		dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k 
 
- 			+ i__ + (*n - *l + i__) * a_dim1], lda);
 
- 	    }
 
- 	} else {
 
- 	    alpha[*k + i__] = 0.;
 
- 	    beta[*k + i__] = 1.;
 
- 	    i__2 = *l - i__ + 1;
 
- 	    dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k + 
 
- 		    i__ + (*n - *l + i__) * a_dim1], lda);
 
- 	}
 
- /* L70: */
 
-     }
 
- /*     Post-assignment */
 
-     i__1 = *k + *l;
 
-     for (i__ = *m + 1; i__ <= i__1; ++i__) {
 
- 	alpha[i__] = 0.;
 
- 	beta[i__] = 1.;
 
- /* L80: */
 
-     }
 
-     if (*k + *l < *n) {
 
- 	i__1 = *n;
 
- 	for (i__ = *k + *l + 1; i__ <= i__1; ++i__) {
 
- 	    alpha[i__] = 0.;
 
- 	    beta[i__] = 0.;
 
- /* L90: */
 
- 	}
 
-     }
 
- L100:
 
-     *ncycle = kcycle;
 
-     return 0;
 
- /*     End of DTGSJA */
 
- } /* dtgsja_ */
 
 
  |