| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837 | 
							- /* dtgsen.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- static doublereal c_b28 = 1.;
 
- /* Subroutine */ int dtgsen_(integer *ijob, logical *wantq, logical *wantz, 
 
- 	logical *select, integer *n, doublereal *a, integer *lda, doublereal *
 
- 	b, integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
 
- 	beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz, 
 
- 	integer *m, doublereal *pl, doublereal *pr, doublereal *dif, 
 
- 	doublereal *work, integer *lwork, integer *iwork, integer *liwork, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
 
- 	    z_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     integer i__, k, n1, n2, kk, ks, mn2, ijb;
 
-     doublereal eps;
 
-     integer kase;
 
-     logical pair;
 
-     integer ierr;
 
-     doublereal dsum;
 
-     logical swap;
 
-     extern /* Subroutine */ int dlag2_(doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *);
 
-     integer isave[3];
 
-     logical wantd;
 
-     integer lwmin;
 
-     logical wantp;
 
-     extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *);
 
-     logical wantd1, wantd2;
 
-     extern doublereal dlamch_(char *);
 
-     doublereal dscale, rdscal;
 
-     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    xerbla_(char *, integer *), dtgexc_(logical *, logical *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *), dlassq_(integer *, 
 
- 	     doublereal *, integer *, doublereal *, doublereal *);
 
-     integer liwmin;
 
-     extern /* Subroutine */ int dtgsyl_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, integer *);
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     January 2007 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTGSEN reorders the generalized real Schur decomposition of a real */
 
- /*  matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
 
- /*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */
 
- /*  appears in the leading diagonal blocks of the upper quasi-triangular */
 
- /*  matrix A and the upper triangular B. The leading columns of Q and */
 
- /*  Z form orthonormal bases of the corresponding left and right eigen- */
 
- /*  spaces (deflating subspaces). (A, B) must be in generalized real */
 
- /*  Schur canonical form (as returned by DGGES), i.e. A is block upper */
 
- /*  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
 
- /*  triangular. */
 
- /*  DTGSEN also computes the generalized eigenvalues */
 
- /*              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */
 
- /*  of the reordered matrix pair (A, B). */
 
- /*  Optionally, DTGSEN computes the estimates of reciprocal condition */
 
- /*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
 
- /*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
 
- /*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
 
- /*  the selected cluster and the eigenvalues outside the cluster, resp., */
 
- /*  and norms of "projections" onto left and right eigenspaces w.r.t. */
 
- /*  the selected cluster in the (1,1)-block. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  IJOB    (input) INTEGER */
 
- /*          Specifies whether condition numbers are required for the */
 
- /*          cluster of eigenvalues (PL and PR) or the deflating subspaces */
 
- /*          (Difu and Difl): */
 
- /*           =0: Only reorder w.r.t. SELECT. No extras. */
 
- /*           =1: Reciprocal of norms of "projections" onto left and right */
 
- /*               eigenspaces w.r.t. the selected cluster (PL and PR). */
 
- /*           =2: Upper bounds on Difu and Difl. F-norm-based estimate */
 
- /*               (DIF(1:2)). */
 
- /*           =3: Estimate of Difu and Difl. 1-norm-based estimate */
 
- /*               (DIF(1:2)). */
 
- /*               About 5 times as expensive as IJOB = 2. */
 
- /*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
 
- /*               version to get it all. */
 
- /*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
 
- /*  WANTQ   (input) LOGICAL */
 
- /*          .TRUE. : update the left transformation matrix Q; */
 
- /*          .FALSE.: do not update Q. */
 
- /*  WANTZ   (input) LOGICAL */
 
- /*          .TRUE. : update the right transformation matrix Z; */
 
- /*          .FALSE.: do not update Z. */
 
- /*  SELECT  (input) LOGICAL array, dimension (N) */
 
- /*          SELECT specifies the eigenvalues in the selected cluster. */
 
- /*          To select a real eigenvalue w(j), SELECT(j) must be set to */
 
- /*          .TRUE.. To select a complex conjugate pair of eigenvalues */
 
- /*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
 
- /*          either SELECT(j) or SELECT(j+1) or both must be set to */
 
- /*          .TRUE.; a complex conjugate pair of eigenvalues must be */
 
- /*          either both included in the cluster or both excluded. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A and B. N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N) */
 
- /*          On entry, the upper quasi-triangular matrix A, with (A, B) in */
 
- /*          generalized real Schur canonical form. */
 
- /*          On exit, A is overwritten by the reordered matrix A. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N) */
 
- /*          On entry, the upper triangular matrix B, with (A, B) in */
 
- /*          generalized real Schur canonical form. */
 
- /*          On exit, B is overwritten by the reordered matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,N). */
 
- /*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  BETA    (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 
- /*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i */
 
- /*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur */
 
- /*          form (S,T) that would result if the 2-by-2 diagonal blocks of */
 
- /*          the real generalized Schur form of (A,B) were further reduced */
 
- /*          to triangular form using complex unitary transformations. */
 
- /*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 
- /*          positive, then the j-th and (j+1)-st eigenvalues are a */
 
- /*          complex conjugate pair, with ALPHAI(j+1) negative. */
 
- /*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
 
- /*          On exit, Q has been postmultiplied by the left orthogonal */
 
- /*          transformation matrix which reorder (A, B); The leading M */
 
- /*          columns of Q form orthonormal bases for the specified pair of */
 
- /*          left eigenspaces (deflating subspaces). */
 
- /*          If WANTQ = .FALSE., Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q.  LDQ >= 1; */
 
- /*          and if WANTQ = .TRUE., LDQ >= N. */
 
- /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
 
- /*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
 
- /*          On exit, Z has been postmultiplied by the left orthogonal */
 
- /*          transformation matrix which reorder (A, B); The leading M */
 
- /*          columns of Z form orthonormal bases for the specified pair of */
 
- /*          left eigenspaces (deflating subspaces). */
 
- /*          If WANTZ = .FALSE., Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z. LDZ >= 1; */
 
- /*          If WANTZ = .TRUE., LDZ >= N. */
 
- /*  M       (output) INTEGER */
 
- /*          The dimension of the specified pair of left and right eigen- */
 
- /*          spaces (deflating subspaces). 0 <= M <= N. */
 
- /*  PL      (output) DOUBLE PRECISION */
 
- /*  PR      (output) DOUBLE PRECISION */
 
- /*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
 
- /*          reciprocal of the norm of "projections" onto left and right */
 
- /*          eigenspaces with respect to the selected cluster. */
 
- /*          0 < PL, PR <= 1. */
 
- /*          If M = 0 or M = N, PL = PR  = 1. */
 
- /*          If IJOB = 0, 2 or 3, PL and PR are not referenced. */
 
- /*  DIF     (output) DOUBLE PRECISION array, dimension (2). */
 
- /*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
 
- /*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
 
- /*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
 
- /*          estimates of Difu and Difl. */
 
- /*          If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
 
- /*          If IJOB = 0 or 1, DIF is not referenced. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, */
 
- /*          dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >=  4*N+16. */
 
- /*          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
 
- /*          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          IF IJOB = 0, IWORK is not referenced.  Otherwise, */
 
- /*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. LIWORK >= 1. */
 
- /*          If IJOB = 1, 2 or 4, LIWORK >=  N+6. */
 
- /*          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal size of the IWORK array, */
 
- /*          returns this value as the first entry of the IWORK array, and */
 
- /*          no error message related to LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*            =0: Successful exit. */
 
- /*            <0: If INFO = -i, the i-th argument had an illegal value. */
 
- /*            =1: Reordering of (A, B) failed because the transformed */
 
- /*                matrix pair (A, B) would be too far from generalized */
 
- /*                Schur form; the problem is very ill-conditioned. */
 
- /*                (A, B) may have been partially reordered. */
 
- /*                If requested, 0 is returned in DIF(*), PL and PR. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  DTGSEN first collects the selected eigenvalues by computing */
 
- /*  orthogonal U and W that move them to the top left corner of (A, B). */
 
- /*  In other words, the selected eigenvalues are the eigenvalues of */
 
- /*  (A11, B11) in: */
 
- /*                U'*(A, B)*W = (A11 A12) (B11 B12) n1 */
 
- /*                              ( 0  A22),( 0  B22) n2 */
 
- /*                                n1  n2    n1  n2 */
 
- /*  where N = n1+n2 and U' means the transpose of U. The first n1 columns */
 
- /*  of U and W span the specified pair of left and right eigenspaces */
 
- /*  (deflating subspaces) of (A, B). */
 
- /*  If (A, B) has been obtained from the generalized real Schur */
 
- /*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */
 
- /*  reordered generalized real Schur form of (C, D) is given by */
 
- /*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */
 
- /*  and the first n1 columns of Q*U and Z*W span the corresponding */
 
- /*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
 
- /*  Note that if the selected eigenvalue is sufficiently ill-conditioned, */
 
- /*  then its value may differ significantly from its value before */
 
- /*  reordering. */
 
- /*  The reciprocal condition numbers of the left and right eigenspaces */
 
- /*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
 
- /*  be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
 
- /*  The Difu and Difl are defined as: */
 
- /*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) */
 
- /*  and */
 
- /*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
 
- /*  where sigma-min(Zu) is the smallest singular value of the */
 
- /*  (2*n1*n2)-by-(2*n1*n2) matrix */
 
- /*       Zu = [ kron(In2, A11)  -kron(A22', In1) ] */
 
- /*            [ kron(In2, B11)  -kron(B22', In1) ]. */
 
- /*  Here, Inx is the identity matrix of size nx and A22' is the */
 
- /*  transpose of A22. kron(X, Y) is the Kronecker product between */
 
- /*  the matrices X and Y. */
 
- /*  When DIF(2) is small, small changes in (A, B) can cause large changes */
 
- /*  in the deflating subspace. An approximate (asymptotic) bound on the */
 
- /*  maximum angular error in the computed deflating subspaces is */
 
- /*       EPS * norm((A, B)) / DIF(2), */
 
- /*  where EPS is the machine precision. */
 
- /*  The reciprocal norm of the projectors on the left and right */
 
- /*  eigenspaces associated with (A11, B11) may be returned in PL and PR. */
 
- /*  They are computed as follows. First we compute L and R so that */
 
- /*  P*(A, B)*Q is block diagonal, where */
 
- /*       P = ( I -L ) n1           Q = ( I R ) n1 */
 
- /*           ( 0  I ) n2    and        ( 0 I ) n2 */
 
- /*             n1 n2                    n1 n2 */
 
- /*  and (L, R) is the solution to the generalized Sylvester equation */
 
- /*       A11*R - L*A22 = -A12 */
 
- /*       B11*R - L*B22 = -B12 */
 
- /*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
 
- /*  An approximate (asymptotic) bound on the average absolute error of */
 
- /*  the selected eigenvalues is */
 
- /*       EPS * norm((A, B)) / PL. */
 
- /*  There are also global error bounds which valid for perturbations up */
 
- /*  to a certain restriction:  A lower bound (x) on the smallest */
 
- /*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
 
- /*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
 
- /*  (i.e. (A + E, B + F), is */
 
- /*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). */
 
- /*  An approximate bound on x can be computed from DIF(1:2), PL and PR. */
 
- /*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
 
- /*  (L', R') and unperturbed (L, R) left and right deflating subspaces */
 
- /*  associated with the selected cluster in the (1,1)-blocks can be */
 
- /*  bounded as */
 
- /*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
 
- /*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
 
- /*  See LAPACK User's Guide section 4.11 or the following references */
 
- /*  for more information. */
 
- /*  Note that if the default method for computing the Frobenius-norm- */
 
- /*  based estimate DIF is not wanted (see DLATDF), then the parameter */
 
- /*  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF */
 
- /*  (IJOB = 2 will be used)). See DTGSYL for more details. */
 
- /*  Based on contributions by */
 
- /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 
- /*     Umea University, S-901 87 Umea, Sweden. */
 
- /*  References */
 
- /*  ========== */
 
- /*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
 
- /*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
 
- /*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
 
- /*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
 
- /*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
 
- /*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
 
- /*      Estimation: Theory, Algorithms and Software, */
 
- /*      Report UMINF - 94.04, Department of Computing Science, Umea */
 
- /*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
 
- /*      Note 87. To appear in Numerical Algorithms, 1996. */
 
- /*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
 
- /*      for Solving the Generalized Sylvester Equation and Estimating the */
 
- /*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
 
- /*      Department of Computing Science, Umea University, S-901 87 Umea, */
 
- /*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
 
- /*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
 
- /*      1996. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --alphar;
 
-     --alphai;
 
-     --beta;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --dif;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     if (*ijob < 0 || *ijob > 5) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -5;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -7;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -9;
 
-     } else if (*ldq < 1 || *wantq && *ldq < *n) {
 
- 	*info = -14;
 
-     } else if (*ldz < 1 || *wantz && *ldz < *n) {
 
- 	*info = -16;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTGSEN", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = dlamch_("P");
 
-     smlnum = dlamch_("S") / eps;
 
-     ierr = 0;
 
-     wantp = *ijob == 1 || *ijob >= 4;
 
-     wantd1 = *ijob == 2 || *ijob == 4;
 
-     wantd2 = *ijob == 3 || *ijob == 5;
 
-     wantd = wantd1 || wantd2;
 
- /*     Set M to the dimension of the specified pair of deflating */
 
- /*     subspaces. */
 
-     *m = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	} else {
 
- 	    if (k < *n) {
 
- 		if (a[k + 1 + k * a_dim1] == 0.) {
 
- 		    if (select[k]) {
 
- 			++(*m);
 
- 		    }
 
- 		} else {
 
- 		    pair = TRUE_;
 
- 		    if (select[k] || select[k + 1]) {
 
- 			*m += 2;
 
- 		    }
 
- 		}
 
- 	    } else {
 
- 		if (select[*n]) {
 
- 		    ++(*m);
 
- 		}
 
- 	    }
 
- 	}
 
- /* L10: */
 
-     }
 
-     if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 
 
- 		1) * (*n - *m);
 
- 	lwmin = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n + 6;
 
- 	liwmin = max(i__1,i__2);
 
-     } else if (*ijob == 3 || *ijob == 5) {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m << 
 
- 		2) * (*n - *m);
 
- 	lwmin = max(i__1,i__2);
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 = 
 
- 		*n + 6;
 
- 	liwmin = max(i__1,i__2);
 
-     } else {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = (*n << 2) + 16;
 
- 	lwmin = max(i__1,i__2);
 
- 	liwmin = 1;
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     if (*lwork < lwmin && ! lquery) {
 
- 	*info = -22;
 
-     } else if (*liwork < liwmin && ! lquery) {
 
- 	*info = -24;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTGSEN", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == *n || *m == 0) {
 
- 	if (wantp) {
 
- 	    *pl = 1.;
 
- 	    *pr = 1.;
 
- 	}
 
- 	if (wantd) {
 
- 	    dscale = 0.;
 
- 	    dsum = 1.;
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		dlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
 
- 		dlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
 
- /* L20: */
 
- 	    }
 
- 	    dif[1] = dscale * sqrt(dsum);
 
- 	    dif[2] = dif[1];
 
- 	}
 
- 	goto L60;
 
-     }
 
- /*     Collect the selected blocks at the top-left corner of (A, B). */
 
-     ks = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	} else {
 
- 	    swap = select[k];
 
- 	    if (k < *n) {
 
- 		if (a[k + 1 + k * a_dim1] != 0.) {
 
- 		    pair = TRUE_;
 
- 		    swap = swap || select[k + 1];
 
- 		}
 
- 	    }
 
- 	    if (swap) {
 
- 		++ks;
 
- /*              Swap the K-th block to position KS. */
 
- /*              Perform the reordering of diagonal blocks in (A, B) */
 
- /*              by orthogonal transformation matrices and update */
 
- /*              Q and Z accordingly (if requested): */
 
- 		kk = k;
 
- 		if (k != ks) {
 
- 		    dtgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], 
 
- 			    ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk, 
 
- 			    &ks, &work[1], lwork, &ierr);
 
- 		}
 
- 		if (ierr > 0) {
 
- /*                 Swap is rejected: exit. */
 
- 		    *info = 1;
 
- 		    if (wantp) {
 
- 			*pl = 0.;
 
- 			*pr = 0.;
 
- 		    }
 
- 		    if (wantd) {
 
- 			dif[1] = 0.;
 
- 			dif[2] = 0.;
 
- 		    }
 
- 		    goto L60;
 
- 		}
 
- 		if (pair) {
 
- 		    ++ks;
 
- 		}
 
- 	    }
 
- 	}
 
- /* L30: */
 
-     }
 
-     if (wantp) {
 
- /*        Solve generalized Sylvester equation for R and L */
 
- /*        and compute PL and PR. */
 
- 	n1 = *m;
 
- 	n2 = *n - *m;
 
- 	i__ = n1 + 1;
 
- 	ijb = 0;
 
- 	dlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
 
- 	dlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 
 
- 		1], &n1);
 
- 	i__1 = *lwork - (n1 << 1) * n2;
 
- 	dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
 
- , lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * 
 
- 		b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
 
- 		work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
 
- /*        Estimate the reciprocal of norms of "projections" onto left */
 
- /*        and right eigenspaces. */
 
- 	rdscal = 0.;
 
- 	dsum = 1.;
 
- 	i__1 = n1 * n2;
 
- 	dlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
 
- 	*pl = rdscal * sqrt(dsum);
 
- 	if (*pl == 0.) {
 
- 	    *pl = 1.;
 
- 	} else {
 
- 	    *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
 
- 	}
 
- 	rdscal = 0.;
 
- 	dsum = 1.;
 
- 	i__1 = n1 * n2;
 
- 	dlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
 
- 	*pr = rdscal * sqrt(dsum);
 
- 	if (*pr == 0.) {
 
- 	    *pr = 1.;
 
- 	} else {
 
- 	    *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
 
- 	}
 
-     }
 
-     if (wantd) {
 
- /*        Compute estimates of Difu and Difl. */
 
- 	if (wantd1) {
 
- 	    n1 = *m;
 
- 	    n2 = *n - *m;
 
- 	    i__ = n1 + 1;
 
- 	    ijb = 3;
 
- /*           Frobenius norm-based Difu-estimate. */
 
- 	    i__1 = *lwork - (n1 << 1) * n2;
 
- 	    dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * 
 
- 		    a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + 
 
- 		    i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
 
- 		    dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
 
- 		    ierr);
 
- /*           Frobenius norm-based Difl-estimate. */
 
- 	    i__1 = *lwork - (n1 << 1) * n2;
 
- 	    dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
 
- 		    a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], 
 
- 		    ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, 
 
- 		    &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
 
- 		    ierr);
 
- 	} else {
 
- /*           Compute 1-norm-based estimates of Difu and Difl using */
 
- /*           reversed communication with DLACN2. In each step a */
 
- /*           generalized Sylvester equation or a transposed variant */
 
- /*           is solved. */
 
- 	    kase = 0;
 
- 	    n1 = *m;
 
- 	    n2 = *n - *m;
 
- 	    i__ = n1 + 1;
 
- 	    ijb = 0;
 
- 	    mn2 = (n1 << 1) * n2;
 
- /*           1-norm-based estimate of Difu. */
 
- L40:
 
- 	    dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase, 
 
- 		     isave);
 
- 	    if (kase != 0) {
 
- 		if (kase == 1) {
 
- /*                 Solve generalized Sylvester equation. */
 
- 		    i__1 = *lwork - (n1 << 1) * n2;
 
- 		    dtgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
 
- 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
 
- 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
 
- 			    1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 
 
- 			    1], &i__1, &iwork[1], &ierr);
 
- 		} else {
 
- /*                 Solve the transposed variant. */
 
- 		    i__1 = *lwork - (n1 << 1) * n2;
 
- 		    dtgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
 
- 			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
 
- 			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
 
- 			    1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 + 
 
- 			    1], &i__1, &iwork[1], &ierr);
 
- 		}
 
- 		goto L40;
 
- 	    }
 
- 	    dif[1] = dscale / dif[1];
 
- /*           1-norm-based estimate of Difl. */
 
- L50:
 
- 	    dlacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase, 
 
- 		     isave);
 
- 	    if (kase != 0) {
 
- 		if (kase == 1) {
 
- /*                 Solve generalized Sylvester equation. */
 
- 		    i__1 = *lwork - (n1 << 1) * n2;
 
- 		    dtgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
 
- 			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 
 
- 			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 
 
- 			    1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 
 
- 			    1], &i__1, &iwork[1], &ierr);
 
- 		} else {
 
- /*                 Solve the transposed variant. */
 
- 		    i__1 = *lwork - (n1 << 1) * n2;
 
- 		    dtgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
 
- 			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 
 
- 			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 
 
- 			    1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 + 
 
- 			    1], &i__1, &iwork[1], &ierr);
 
- 		}
 
- 		goto L50;
 
- 	    }
 
- 	    dif[2] = dscale / dif[2];
 
- 	}
 
-     }
 
- L60:
 
- /*     Compute generalized eigenvalues of reordered pair (A, B) and */
 
- /*     normalize the generalized Schur form. */
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	} else {
 
- 	    if (k < *n) {
 
- 		if (a[k + 1 + k * a_dim1] != 0.) {
 
- 		    pair = TRUE_;
 
- 		}
 
- 	    }
 
- 	    if (pair) {
 
- /*             Compute the eigenvalue(s) at position K. */
 
- 		work[1] = a[k + k * a_dim1];
 
- 		work[2] = a[k + 1 + k * a_dim1];
 
- 		work[3] = a[k + (k + 1) * a_dim1];
 
- 		work[4] = a[k + 1 + (k + 1) * a_dim1];
 
- 		work[5] = b[k + k * b_dim1];
 
- 		work[6] = b[k + 1 + k * b_dim1];
 
- 		work[7] = b[k + (k + 1) * b_dim1];
 
- 		work[8] = b[k + 1 + (k + 1) * b_dim1];
 
- 		d__1 = smlnum * eps;
 
- 		dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta[k], &
 
- 			beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);
 
- 		alphai[k + 1] = -alphai[k];
 
- 	    } else {
 
- 		if (d_sign(&c_b28, &b[k + k * b_dim1]) < 0.) {
 
- /*                 If B(K,K) is negative, make it positive */
 
- 		    i__2 = *n;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];
 
- 			b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];
 
- 			if (*wantq) {
 
- 			    q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];
 
- 			}
 
- /* L70: */
 
- 		    }
 
- 		}
 
- 		alphar[k] = a[k + k * a_dim1];
 
- 		alphai[k] = 0.;
 
- 		beta[k] = b[k + k * b_dim1];
 
- 	    }
 
- 	}
 
- /* L80: */
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DTGSEN */
 
- } /* dtgsen_ */
 
 
  |