| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 | 
							- /* dsterf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__0 = 0;
 
- static integer c__1 = 1;
 
- static doublereal c_b32 = 1.;
 
- /* Subroutine */ int dsterf_(integer *n, doublereal *d__, doublereal *e, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     doublereal c__;
 
-     integer i__, l, m;
 
-     doublereal p, r__, s;
 
-     integer l1;
 
-     doublereal bb, rt1, rt2, eps, rte;
 
-     integer lsv;
 
-     doublereal eps2, oldc;
 
-     integer lend, jtot;
 
-     extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 
 
- 	    *, doublereal *, doublereal *);
 
-     doublereal gamma, alpha, sigma, anorm;
 
-     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
 
-     integer iscale;
 
-     extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     doublereal oldgam, safmin;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal safmax;
 
-     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 
 
- 	    integer *);
 
-     integer lendsv;
 
-     doublereal ssfmin;
 
-     integer nmaxit;
 
-     doublereal ssfmax;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
 
- /*  using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal matrix. */
 
- /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix. */
 
- /*          On exit, E has been destroyed. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  the algorithm failed to find all of the eigenvalues in */
 
- /*                a total of 30*N iterations; if INFO = i, then i */
 
- /*                elements of E have not converged to zero. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --e;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
- /*     Quick return if possible */
 
-     if (*n < 0) {
 
- 	*info = -1;
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSTERF", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*n <= 1) {
 
- 	return 0;
 
-     }
 
- /*     Determine the unit roundoff for this environment. */
 
-     eps = dlamch_("E");
 
- /* Computing 2nd power */
 
-     d__1 = eps;
 
-     eps2 = d__1 * d__1;
 
-     safmin = dlamch_("S");
 
-     safmax = 1. / safmin;
 
-     ssfmax = sqrt(safmax) / 3.;
 
-     ssfmin = sqrt(safmin) / eps2;
 
- /*     Compute the eigenvalues of the tridiagonal matrix. */
 
-     nmaxit = *n * 30;
 
-     sigma = 0.;
 
-     jtot = 0;
 
- /*     Determine where the matrix splits and choose QL or QR iteration */
 
- /*     for each block, according to whether top or bottom diagonal */
 
- /*     element is smaller. */
 
-     l1 = 1;
 
- L10:
 
-     if (l1 > *n) {
 
- 	goto L170;
 
-     }
 
-     if (l1 > 1) {
 
- 	e[l1 - 1] = 0.;
 
-     }
 
-     i__1 = *n - 1;
 
-     for (m = l1; m <= i__1; ++m) {
 
- 	if ((d__3 = e[m], abs(d__3)) <= sqrt((d__1 = d__[m], abs(d__1))) * 
 
- 		sqrt((d__2 = d__[m + 1], abs(d__2))) * eps) {
 
- 	    e[m] = 0.;
 
- 	    goto L30;
 
- 	}
 
- /* L20: */
 
-     }
 
-     m = *n;
 
- L30:
 
-     l = l1;
 
-     lsv = l;
 
-     lend = m;
 
-     lendsv = lend;
 
-     l1 = m + 1;
 
-     if (lend == l) {
 
- 	goto L10;
 
-     }
 
- /*     Scale submatrix in rows and columns L to LEND */
 
-     i__1 = lend - l + 1;
 
-     anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
 
-     iscale = 0;
 
-     if (anorm > ssfmax) {
 
- 	iscale = 1;
 
- 	i__1 = lend - l + 1;
 
- 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
 
- 		info);
 
- 	i__1 = lend - l;
 
- 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
 
- 		info);
 
-     } else if (anorm < ssfmin) {
 
- 	iscale = 2;
 
- 	i__1 = lend - l + 1;
 
- 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
 
- 		info);
 
- 	i__1 = lend - l;
 
- 	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
 
- 		info);
 
-     }
 
-     i__1 = lend - 1;
 
-     for (i__ = l; i__ <= i__1; ++i__) {
 
- /* Computing 2nd power */
 
- 	d__1 = e[i__];
 
- 	e[i__] = d__1 * d__1;
 
- /* L40: */
 
-     }
 
- /*     Choose between QL and QR iteration */
 
-     if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
 
- 	lend = lsv;
 
- 	l = lendsv;
 
-     }
 
-     if (lend >= l) {
 
- /*        QL Iteration */
 
- /*        Look for small subdiagonal element. */
 
- L50:
 
- 	if (l != lend) {
 
- 	    i__1 = lend - 1;
 
- 	    for (m = l; m <= i__1; ++m) {
 
- 		if ((d__2 = e[m], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
 
- 			+ 1], abs(d__1))) {
 
- 		    goto L70;
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	}
 
- 	m = lend;
 
- L70:
 
- 	if (m < lend) {
 
- 	    e[m] = 0.;
 
- 	}
 
- 	p = d__[l];
 
- 	if (m == l) {
 
- 	    goto L90;
 
- 	}
 
- /*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
 
- /*        eigenvalues. */
 
- 	if (m == l + 1) {
 
- 	    rte = sqrt(e[l]);
 
- 	    dlae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
 
- 	    d__[l] = rt1;
 
- 	    d__[l + 1] = rt2;
 
- 	    e[l] = 0.;
 
- 	    l += 2;
 
- 	    if (l <= lend) {
 
- 		goto L50;
 
- 	    }
 
- 	    goto L150;
 
- 	}
 
- 	if (jtot == nmaxit) {
 
- 	    goto L150;
 
- 	}
 
- 	++jtot;
 
- /*        Form shift. */
 
- 	rte = sqrt(e[l]);
 
- 	sigma = (d__[l + 1] - p) / (rte * 2.);
 
- 	r__ = dlapy2_(&sigma, &c_b32);
 
- 	sigma = p - rte / (sigma + d_sign(&r__, &sigma));
 
- 	c__ = 1.;
 
- 	s = 0.;
 
- 	gamma = d__[m] - sigma;
 
- 	p = gamma * gamma;
 
- /*        Inner loop */
 
- 	i__1 = l;
 
- 	for (i__ = m - 1; i__ >= i__1; --i__) {
 
- 	    bb = e[i__];
 
- 	    r__ = p + bb;
 
- 	    if (i__ != m - 1) {
 
- 		e[i__ + 1] = s * r__;
 
- 	    }
 
- 	    oldc = c__;
 
- 	    c__ = p / r__;
 
- 	    s = bb / r__;
 
- 	    oldgam = gamma;
 
- 	    alpha = d__[i__];
 
- 	    gamma = c__ * (alpha - sigma) - s * oldgam;
 
- 	    d__[i__ + 1] = oldgam + (alpha - gamma);
 
- 	    if (c__ != 0.) {
 
- 		p = gamma * gamma / c__;
 
- 	    } else {
 
- 		p = oldc * bb;
 
- 	    }
 
- /* L80: */
 
- 	}
 
- 	e[l] = s * p;
 
- 	d__[l] = sigma + gamma;
 
- 	goto L50;
 
- /*        Eigenvalue found. */
 
- L90:
 
- 	d__[l] = p;
 
- 	++l;
 
- 	if (l <= lend) {
 
- 	    goto L50;
 
- 	}
 
- 	goto L150;
 
-     } else {
 
- /*        QR Iteration */
 
- /*        Look for small superdiagonal element. */
 
- L100:
 
- 	i__1 = lend + 1;
 
- 	for (m = l; m >= i__1; --m) {
 
- 	    if ((d__2 = e[m - 1], abs(d__2)) <= eps2 * (d__1 = d__[m] * d__[m 
 
- 		    - 1], abs(d__1))) {
 
- 		goto L120;
 
- 	    }
 
- /* L110: */
 
- 	}
 
- 	m = lend;
 
- L120:
 
- 	if (m > lend) {
 
- 	    e[m - 1] = 0.;
 
- 	}
 
- 	p = d__[l];
 
- 	if (m == l) {
 
- 	    goto L140;
 
- 	}
 
- /*        If remaining matrix is 2 by 2, use DLAE2 to compute its */
 
- /*        eigenvalues. */
 
- 	if (m == l - 1) {
 
- 	    rte = sqrt(e[l - 1]);
 
- 	    dlae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
 
- 	    d__[l] = rt1;
 
- 	    d__[l - 1] = rt2;
 
- 	    e[l - 1] = 0.;
 
- 	    l += -2;
 
- 	    if (l >= lend) {
 
- 		goto L100;
 
- 	    }
 
- 	    goto L150;
 
- 	}
 
- 	if (jtot == nmaxit) {
 
- 	    goto L150;
 
- 	}
 
- 	++jtot;
 
- /*        Form shift. */
 
- 	rte = sqrt(e[l - 1]);
 
- 	sigma = (d__[l - 1] - p) / (rte * 2.);
 
- 	r__ = dlapy2_(&sigma, &c_b32);
 
- 	sigma = p - rte / (sigma + d_sign(&r__, &sigma));
 
- 	c__ = 1.;
 
- 	s = 0.;
 
- 	gamma = d__[m] - sigma;
 
- 	p = gamma * gamma;
 
- /*        Inner loop */
 
- 	i__1 = l - 1;
 
- 	for (i__ = m; i__ <= i__1; ++i__) {
 
- 	    bb = e[i__];
 
- 	    r__ = p + bb;
 
- 	    if (i__ != m) {
 
- 		e[i__ - 1] = s * r__;
 
- 	    }
 
- 	    oldc = c__;
 
- 	    c__ = p / r__;
 
- 	    s = bb / r__;
 
- 	    oldgam = gamma;
 
- 	    alpha = d__[i__ + 1];
 
- 	    gamma = c__ * (alpha - sigma) - s * oldgam;
 
- 	    d__[i__] = oldgam + (alpha - gamma);
 
- 	    if (c__ != 0.) {
 
- 		p = gamma * gamma / c__;
 
- 	    } else {
 
- 		p = oldc * bb;
 
- 	    }
 
- /* L130: */
 
- 	}
 
- 	e[l - 1] = s * p;
 
- 	d__[l] = sigma + gamma;
 
- 	goto L100;
 
- /*        Eigenvalue found. */
 
- L140:
 
- 	d__[l] = p;
 
- 	--l;
 
- 	if (l >= lend) {
 
- 	    goto L100;
 
- 	}
 
- 	goto L150;
 
-     }
 
- /*     Undo scaling if necessary */
 
- L150:
 
-     if (iscale == 1) {
 
- 	i__1 = lendsv - lsv + 1;
 
- 	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
 
- 		n, info);
 
-     }
 
-     if (iscale == 2) {
 
- 	i__1 = lendsv - lsv + 1;
 
- 	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
 
- 		n, info);
 
-     }
 
- /*     Check for no convergence to an eigenvalue after a total */
 
- /*     of N*MAXIT iterations. */
 
-     if (jtot < nmaxit) {
 
- 	goto L10;
 
-     }
 
-     i__1 = *n - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (e[i__] != 0.) {
 
- 	    ++(*info);
 
- 	}
 
- /* L160: */
 
-     }
 
-     goto L180;
 
- /*     Sort eigenvalues in increasing order. */
 
- L170:
 
-     dlasrt_("I", n, &d__[1], info);
 
- L180:
 
-     return 0;
 
- /*     End of DSTERF */
 
- } /* dsterf_ */
 
 
  |